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We study the robustness of networks under node removal, considering random node failure, as well as
targeted node attacks based on network centrality measures. Whilst both of these have been studied in
the literature, existing approaches tend to study random failure in terms of average-case behavior, giving
no idea of how badly network performance can degrade purely by chance. Instead of considering average
network performance under random failure, we compute approximate network performance probability
density functions as functions of the fraction of nodes removed. We find that targeted attacks based on
centrality measures give a good indication of the worst-case behavior of a network. We show that many
centrality measures produce similar targeted attacks and that a combination of degree centrality and
eigenvector centrality may be enough to evaluate worst-case behavior of networks. Finally, we study the
robustness envelope and targeted attack responses of networks that are rewired to have high- and low-
degree assortativities, discovering that moderate assortativity increases confer more robustness against
targeted attacks whilst moderate decreases confer more robustness against random uniform attacks.

Keywords: network vulnerability; network robustness; robustness framework; network re-design.

1. Introduction

In a world where critical infrastructure is composed of and controlled by complex networks, tech-
niques for determining network robustness are essential for the design of reliable infrastructure. After
an architecture-dependent number of failures, a network can no longer perform its core function. For
example, a telecommunications network whose hubs are removed may be partitioned into many discon-
nected parts, effectively rendering communication impossible. Appropriate performance metrics can
quantify the robustness of a network to such failures.

Network failure is caused by unintentional failures and intentional attacks. Unintentional failures
include human error, manufacturing defects and worn-out mechanical parts. These kinds of failures
appear randomly and are characterized as random attacks [1,2]. Intentional attacks, on the other hand,
are not random and are aimed at maximizing damage. In the literature, they are known as targeted
attacks [3–5].

In this paper, we study the robustness of network topologies under various challenges. We apply
our methodology to random network models and real networks. Our contributions can be summarized
as follows: (i) instead of considering only a network average performance, we employ a statistical
approach, which shows how all the realizations of random and worst-/best-case targeted removals affect
the network performance, but also how do the realizations differ from one another; (ii) by studying
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centrality rankings similarities, we show that some are redundant and degree centrality and eigenvector
centrality may be enough to evaluate worst-case behavior of networks; (iii) by changing a network by
assortativity optimization degree-preserve rewiring, we find that moderate assortativity increases con-
fer more robustness against targeted attacks whilst moderate decreases confer more robustness against
random uniform attacks.

The paper is organized as follows. In Section 2, we review existing robustness frameworks. Our
robustness envelope metrics are presented in Section 3. In Section 4 metric envelopes of random net-
works as well as real-world networks are studied. In Section 5, we consider the extent to which different
targeted attack strategies overlap. Section 6 explores changes to the envelope of a network under degree-
preserving rewiring. The paper concludes with Section 7.

2. Related work

Network robustness has been studied by a number of researchers, but the lack of a common vocabulary
has made cooperation difficult. Several terms related to robustness have been proposed over the last
50 years, including reliability, resilience, safety, maintainability, dependability and degree-distribution
entropy [6–9]. Meyer [10] studied robustness in the context of his performability framework [11], whilst
Cholda et al. [12] surveyed various robustness frameworks. In previous research [13–15], maintenance
of connectivity under failure has typically been used to characterize network robustness. Connectivity
has been studied from a probabilistic point of view in the context of graph percolation [16,17] and
reliability polynomials [18]. Most probabilistic studies assume that link failures are independent and
that failures occur with the same, fixed probability.

Since the behaviors of topological metrics depend on the characteristics of the networks to which
they are applied, robustness profiles based on these metrics also depend on these characteristics. There-
fore, researchers have studied robustness in the context of various network types. Callaway et al. [19]
and Holme et al. [3] have studied the robustness of random networks and power-law graphs. In par-
ticular, Cohen et al. have examined the robustness of the Internet and other power-law networks under
random [1] and targeted [5] failures. Recently, the robustness of time-evolving networks or temporal
graphs [20,21] has been researched in [2,22]. A method based on the cumulative change of the giant
component under targeted attacks has been proposed by Schneider et al. [23]. Çetinkaya et al. [24]
developed a framework for analyzing packet loss relative to node and link failure. They consider packet
loss under global targeted and random failure, as well as attacks contained within geographic regions.
Our approach is similar to their approach, although we consider not only average network performance
under random attacks but also the density function given the probability that a metric will assume a
given value after a given fraction of node removals.

3. Envelope computation and comparison

In this section, we propose a framework to quantify network robustness. We assume that a network can
be expressed as a graph G, defined by a set N of N nodes interconnected by a set L of L links. With
this formalism, various aspects of the network can be described by means of graph metrics which are
typically real-valued functions of the network.

3.1 Robustness and the R-value

We define robustness as the maintenance of function under node or link removal. In this context, func-
tion is measured by one or more graph metrics. As in [8], we express robustness as a real-valued function
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R of graph metrics, normalized to the range [0, 1]. A value of R = 0 means that the network is completely
non-functional, whereas R = 1 means that the network is fully functional.

Here, we consider two different R-values, computed using the (i) size of the giant component and (ii)
efficiency. The choice of these metrics is arbitrary and it depends on the network function. The method
presented translates easily to other sets of metrics.

(i) Size of the giant component. The number of nodes in the largest connected component of a
network. This metric is a measure of the global connectivity of the network.

(ii) Efficiency. The efficiency [25] of a given network G is the mean of the reciprocals of all the
hopcounts in a network

E[1/H] =
∑

1�i<j�N 1/hi,j(N
2

) .

The hopcount hi,j is the number of links in the shortest path from node i to node j. If there is no path
from i to j, hi,j = ∞ and 1/hi,j = 0. This metric gives an indication of how quickly information spreads
through a network. When E[1/H] = 0, the network is completely disconnected and when E[1/H] = 1,
it is fully connected.

3.2 Network perturbations or challenges

A perturbation or challenge P is defined as a set of elementary changes [8]. Elementary changes include:
(i) addition of a node, (ii) removal of a node, (iii) addition of a link, (iv) removal of a link and (v) in
weighted networks, a change in the weight of a link (or node). We consider only node removals, but
our analysis can be extended to all five perturbation types. A realization is a vector [P1, P2, . . . , PN ] of
perturbations, where Pi is a subset of i nodes. In addition, a realization is called successive iff P1 ⊂ P2 ⊂
. . . ⊂ PN . Since every perturbation has an associated R-value, any realization can also be expressed as
a sequence of R-values denoted {R[k]}0�k�1, where k is the fraction of removed nodes.

3.3 Random attacks and targeted attacks

Network perturbations are classified either as random (un-intentional) failures [1] or as targeted
attacks [3,4].

3.3.1 Random attacks. Assuming that the nature of the attacks is unknown and attacks occur inde-
pendently, R[k] is a random variable. We employ probability density function (PDF), which is the prob-
ability of a random variable to fall within a particular region. The PDF of this R[k] is computed using
all subsets of �kN� nodes of the set Pr of all possible perturbations. The envelope for a graph G is con-
structed using all R[k] for k ∈ {1/N , 2/N , . . . , 1}, where boundaries are given by the extreme R-values

R(Pr)
min [k] =

[
min

(
R

[
1

N

])
, min

(
R

[
2

N

])
, . . . , min(R[1])

]

and

R(Pr)
max [k] =

[
max

(
R

[
1

N

])
, max

(
R

[
2

N

])
, . . . , max(R[1])

]
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Fig. 1. Depictions of the robustness envelopes defined in Section 3. The x-axis represents the fraction of attacked nodes.
(a) Percentiles, (b) average energy, (c) minimum energy and (d) sensitivity.

Such boundaries can be seen in Fig. 1. Although extreme R-values give the best- and worst-case metrics
for a network after a given number of perturbations, we are just as often interested in the expected
R-value resulting from k perturbations

R(Pr)
avg [k] =

[
E

[
R

[
1

N

]]
, E

[
R

[
2

N

]]
, . . . , E[R[1]])

]
.

Finally, since R[k] defines a PDF, we are also interested in the percentile lines of R[k], since they enable
one to calculate contours that describe the robustness for a given percentage of perturbations

R(Pr)
m% [k] =

[
Rm%

[
1

N

]
, Rm%

[
2

N

]
, . . . , Rm%[1])

]
,

where Rm%[k] are the points at which the cumulative distribution of R[k] crosses m/100, namely

Rm%[k] = t ⇔ Pr[R[k] � t] = m

100
.
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We refer to Rm%[k] as an m-percentile. By definition R0%[k] = Rmin[k], and R100%[k] = Rmax[k].
The dark-gray areas in Fig. 1(a) are bounded by low-percentile lines whereas the lighter gray areas
correspond to higher percentile lines.

In the case where �kN� nodes in the network are attacked,
( N
�kN�

)
R-values need to be computed.

It has been shown that the problem of finding a set of nodes minimizing R[k] is NP complete [26].
For this reason, we perform random sampling to approximate the PDF of R[k] and targeted attacks to
approximate the maxima and minima of the PDFs.

3.3.2 Targeted attacks. Targeted attacks are perturbations involving vulnerable nodes. In order to
determine node vulnerability, the attacker must have some knowledge of the topology of the network
under attack. For simplicity, we assume that the nodes are ranked once by the attacker in order from
most vulnerable (most important) to least vulnerable (least important) and are attacked in that order.

Centrality measures may provide a set of such rankings. We consider five different measures: (a)
node degree; (b) betweenness [27]; (c) closeness [28] and (d) eigenvector centrality [29]. In Section 5
we study the extent to which these rankings overlap.

For each of the five centrality measures and for each graph G, we may obtain two successive realiza-
tions: a top realization {R(Ptop)

G [k]}0�k�1 resulting from a perturbation Ptop targeting the highest ranking
k nodes of centrality ordered list and a bottom realization {R(Pbot)

G [k]}0�k�1 resulting from a perturbation
Pbot targeting the lowest �kN� ranked nodes.

3.4 Comparison of networks via envelopes

Suppose that the same perturbation sequence P is applied to two graphs G1 and G2 and that the impact
of a single perturbation is measured via the metric R. The R-values at step k are denoted R(P)

G1
[k] and

R(P)
G2

[k], respectively. In the simple case where G1 and G2 have the same number of nodes and R(P)
G1

[k] >

R(P)
G2

[k] for all k, it is clear that G1 is more robust than G2 with respect to P . But such cases are rare and
we propose two simple metrics for comparing the robustness of different sized networks: the energy E ,
and the sensitivity S.

The energy E of a graph is the normalized sum of the average R-values over all random perturbations
or in the case of targeted attacks, the normalized sum of the R-values

E (P) = 1

K

K∑
k=1

R(P)[k], (3.1)

where K = |P|. Energy expresses how robust, on average, a graph is against a given type of attack.
For instance, if E (P)

G1
> E (P)

G2
, G1 has higher energy than G2 with respect to the perturbation P . Other

examples of energy include those computed from the maximal realization E (P)
max, minimal realization

E (P)
min , expected realization E (P)

avg and m-percentile realization E (P)
m% , as illustrated in Fig. 1(b–c).

The sensitivity S is defined as the energy increment between the 80-percentile and 20-percentile
realizations

S(P) = E (P)
80% − E (P)

20% (3.2)

The sensitivity S indicates how likely the R-value is to shift upon random removals, as illustrated
in Fig. 1(d). The smaller the sensitivity, the narrower the uncertainty of the R-value, thus the better the
robustness. The sensitivity together with the percentiles of R-values express the variability of different
random attacks in a given network.
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4. Robustness of random and real networks

In this section, we study the properties of a variety of random network models and real-world networks
under random and targeted attacks. We expect different behaviors for different types of networks, lead-
ing to a classification of networks based on their energy and sensitivity characteristics.

We consider four network models with different structural properties: Erdős–Rényi networks,
Watts–Strogatz networks, Barabási–Albert networks, and lattices. Erdős–Rényi networks [30,31] are
a 2-parameter family of random networks denoted Gp(N). The parameter N is the number of nodes in
the network whilst the parameter p is the probability that two nodes are connected by a link. Watts–
Strogatz W(N , q, p) networks [32] are a family of networks with small-world properties, whose main
features are small average shortest paths and high clustering coefficients. Initially, a Watts–Strogatz
instance is a regular ring lattice in which each node is connected to q neighbors. The topology is then
randomized by replacing, with a probability p, an incident node of each link with a random node, pro-
vided that no self-loops or multiple links between nodes are introduced. Barabási–Albert networks [33]
are a family of scale-free networks whose architectures emerge from preferential attachment. Initially, a
Barabási–Albert network instance has m0 nodes. The remaining N − m0 nodes are added one at a time,
each one connected by m links to already-placed nodes with probabilities proportional to the degrees of
those nodes. We also consider rectangular lattice networks. A lattice LN×M has NM nodes; the central
(N − 2)(M − 2) nodes have degree 4; the 2(N + M − 2) non-corner nodes have degree 3 and the 4
corner nodes have degree 2.

The instances of the network models considered in this paper all have N = 100 nodes, except for the
lattices where the number of nodes is defined the ‘width’ and the ‘height’ of them. We consider (sparse)
networks with L ≈ 500 links, as well as (relatively dense) networks with L ≈ 3200 links. The parameter
choices of our network models are therefore chosen to generate networks with (approximately) these
link counts. The rewiring probability for the Watts–Strogatz instances is chosen to be p = 0.1, leading
to networks with high clustering coefficients and low average hop-counts (this is called the small-world
regime). The lattice network does not accept any input parameters, hence we displayed two arbitrarily
chosen lattices: a square-like with 20-by-20 nodes, and a stretched lattice with 100-by-10 nodes.

In addition to instances of random network models, we consider four real-world networks. First
are the high-voltage power grids of the Western United States [32] and of Western Europe [34]. In the
remainder of the paper, we refer to these two networks as USp and EUp, respectively. Nodes repre-
sent power stations, transformers and generators and links represent high-voltage connections between
nodes. Secondly, we study a social collaboration network from ArXiv that covers papers joining authors
in the field of Relativity and Quantum Cosmology [35] in the period January 1993 to April 2003. We
refer to this network as CA. Here, two nodes are joined if the two authors appear as co-authors in at
least one paper. Finally, we consider the Western European Railway network, referred to as EUr. The
nodes in the network represent railway stations and links represent railway tracks between stations. The
size of each real network is given in Table 1.

Table 1 Real networks used in this paper, ordered by size

Network N L Description

USp 4941 6594 Western US power grid network [32]
CA 5242 14484 Co-authorship network [35]
EUr 8730 11350 Western Europe railway network
EUp 9168 10417 Western Europe power grid network
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ROBUSTNESS ENVELOPES OF NETWORKS 7 of 19

4.1 Theoretical preliminaries

Let us denote by G(N ; k) a network with N nodes which has had a fraction k of its nodes attacked.
Before any attacks, the network is thus denoted by G(N ; 0). We are interested in calculating the change
in the network metric R = R(P)

G(N ;k) as a function of the percentage of attacked nodes k. Denote by T the
set of nodes that have been attacked and denote by N \T the nodes that have not been attacked. Here,
N is the set of all nodes in the network. The number of attacked nodes in G(N , k) is m = |T | = �kN�
and therefore the number of nodes that have not been attacked is N − m = |N \T | = N − �kN�.

A metric, such as efficiency, whose value is the average over all node pairs is dealt with in a similar
fashion. Denote by Rij the contribution of a pair of nodes i and j (i |= j) to the R-value. If either node i or
j has been removed (that is, i ∈ T or j ∈ T ), Rij = 0. Thus,

R = 1

N(N − 1)

N∑
i=1

N∑
j=1

Rij = 1

N(N − 1)

∑
i,j∈N \T ,i |= j

Rij (4.1)

4.2 Analytical results for Erdős–Rényi networks

Here, we provide analytical results for the robustness of Erdős–Rényi random networks relative to the
efficiency and size of the giant component. In the case of random removal, where k% of the nodes are
discarded, the resulting network has N ′ nodes of degree 0. The remaining nodes form an Erdős–Rényi
random network Gp(N − m) with the same link density p because the link between two nodes from
N \T appears with a fixed probability p. Targeted attacks afford no such easy analysis, making them
much less analytically tractable.

Efficiency. The average efficiency is the reciprocal of the mean hopcount, which is approximately
hij ≈ ln(N)/ln(Np) for an arbitrary pair of nodes i and j in a connected Erdős–Rényi network [36,37].
Consequently, the efficiency eij for the pair i, j is eij = 1/hij ≈ ln(Np)/ln(N). Consider the independent,
random removal of k% of the nodes. The resulting network is an Erdős–Rényi network Gp(N − �kN�)
with N ′ = �kN� isolated nodes. Thus, the efficiency eij of an arbitrary pair of nodes i and j is approxi-
mately

eij =
⎧⎨
⎩

ln((N − �kN�)p)

ln(N − �kN�) , for i, j ∈N \N ′

0, otherwise
(4.2)

Substituting (4.2) into (4.1) yields

E[1/H] =
∑

i,j∈N \N ′,i |= j eij

N(N − 1)
=

∑
i,j∈N \N ′,i |= j

ln((N−�kN�)p)

ln(N−�kN�)
N(N − 1)

≈
ln((1−k)Np)

ln((1−k)N)

∑
i,j∈N \N ′,i |= j 1

N(N − 1)

=
ln((1−k)Np)

ln((1−k)N)
N ′(N ′ − 1)

N(N − 1)
≈

ln((1−k)Np)

ln((1−k)N)
(N − kN)2

N2
= (1 − k)2 ln((1 − k)Np)

ln((1 − k)N)
(4.3)

The shape of (4.3) is validated by Fig. 3(a) and (d).
The size of the giant component. The size of the giant component decreases when the network is

attacked, as attacked nodes are removed from the giant component. Thus,

S � 1 − k (4.4)
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where equality holds if and only if all nodes in N \T form a giant component. An Erdős–Rényi network
Gp(N) is almost certainly connected if p > pc = ln N/N , therefore

S = 1 − k, if p >
ln(N − �kN�)

N − �kN� . (4.5)

The function ln(N − �kN�)/(N − �kN�) increases with the percentage of attacked nodes k. Thus,
for fixed values of p and N and large enough values of k, p � ln(N − �kN�)/(N − �kN�). As this is
the connectivity threshold for Erdős–Rényi networks, we find that S < 1 − k. The ‘dips’ in the lines
R = 1 − k for large k in Fig. 2(a) and (d) are manifestations of disconnected giant components. As can
be seen in Fig. 2(a), when p is small, disconnection happens for smaller values of k. The size of the
giant component is approximately [36]

S = 1 − e−p(N−�kN�)S ,

which explains the ‘dip’ in the linear line R = (1 − k). In the analysis for the size of the giant component,
we consider R = S, however a slightly similar approach is comparing the absolute values by taking R =
S/S[0], where S[0] is the size of the giant component in the original network. Clearly, both approaches
are identical if the original network does not have disconnected parts.

4.3 Robustness of random network model instances

In this section, we interpret simulation results of the random network model instances. The properties
of the network models considered in the analysis are stated at the beginning of this section (Section 4).
The simulations have been repeated 1000 times to obtain the energy, the sensitivity and R values.

4.3.1 Size of the giant component.
Energy analysis: The maximum energies for all strategies and networks exceed 0.460 (0.5 is the

maximum energy attainable for the giant component, as the slope of R-value cannot exceed (1 − k).
The R-values for the giant component are shown in Fig. 2 and Supplementary Table S1. For almost
all networks, there are sequences of node removals that render large giant components. In addition,
lattice networks show interesting behavior: there seems to be a phase transition around 50% as seen in
Fig. 2(g). After randomly removing more than 50% of the nodes, all the topologies lose energy at an
increased rate, due to the loss of connectivity. This result is in accordance with percolation theory [38],
where the critical probability of bond percolation equals 0.5N .

Sensitivity analysis: Lattice networks display the highest sensitivity, followed by Watts–Strogatz
networks GWS, Barabási–Albert networks GBA, and finally Erdős–Rényi networks GER (see Supple-
mentary Table S1). Erdős–Rényi networks are the least sensitive to node removals, suggesting that this
topology is the most robust in terms the giant component’s sensitivity. However, when the link density
is sufficiently high, sensitivity values are small for all topologies.

Targeted versus random attacks: Amongst the random network models, the ratio Emin/Eavg attains
the highest value for Barabási–Albert networks (an unfavorable condition), followed by Erdős–Rényi
networks and finally Watts–Strogatz networks. As with efficiency, the lattice network has the high-
est ratio Emin/Eavg for all targeted strategies, peaking at 1.42 for node-degree targeted attacks. Again,
this means that, for grid networks, the targeted strategies perform worse (on average) than a random
strategy. The ratio (Emax − Emin)/S is the highest for Barabási–Albert networks, followed by Erdős–
Rényi networks, Watts–Strogatz networks and lattices. Targeted attacks have the largest impact on
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Fig. 2. The R-values for the giant component size. The network model considered and its property (the link density p for Erdős–
Rényi, the number of neighbors q per node and the rewiring probability p in Watts–Strogatz and m the number of links of a newly
added node in Barabási–Albert model) is given in (a)–(h). The x-axis is the percentage of removed nodes either at random ore
according to a centrality measure as it is shown in the legend.

Barabási–Albert networks, whilst Erdős–Rényi networks are the least affected. Table 2 shows that the
most destructive perturbations are those based on degree and betweenness centrality.

4.3.2 Efficiency. As can be seen from Fig. 3, amongst the sparse networks, the lattice has the lowest
average efficiency energy, followed by GWS (with q = 10). Both of these networks are fairly regular
(GWS has a low rewiring probability in our paper) leading us to conclude that regularity does not confer
robustness in terms of efficiency. GBA networks are the most robust to random attacks as well as being
the most sensitive, making them the most vulnerable to targeted attacks. Again, GER networks win in
terms of energy and sensitivity, making them robust both to random and targeted attacks.

Table 3 reveals the effect of particular attack strategies on the network models. Again, node degree
and betweenness attack strategies perturb non-lattice networks the most, in contrast to lattices where the
eigenvector attack strategy is the most disruptive.
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Table 2 Summary of the most and least destructive targeted attack strategies on ran-
dom networks relative to the sizes of their giant components. Larger giant components are
deemed more desirable. The symbol − means ‘most destructive’ whilst + means ‘least
destructive’. All considered attacks had approximately the same least effect on all net-
works. As we already mentioned, every attack’s maximum R-value is above 0.46
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Fig. 3. The R-values for the efficiency. The network model considered and its property (the link density p for Erdős–Rényi, the
number of neighbors q per node and the rewiring probability p in Watts–Strogatz and m the number of links of a newly added
node in Barabási–Albert model) is given in (a)–(h). The x-axis is the percentage of removed nodes either at random ore according
to a centrality measure as it is shown in the legend.
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Table 3 Summary of the most and least destructive targeted attack
strategies on random networks relative to efficiency. Higher efficiency val-
ues are deemed more desirable. The symbol − means ‘most destructive’
whilst + means ‘least destructive’
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Fig. 4. R-values for the real-world networks. The network considered and the metric reflecting R-value are given in (a)–(h). The
x-axis is the percentage of removed nodes either at random ore according to a centrality measure as it is shown in the legend.
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4.4 Robustness of real networks

In this section, we compare the robustness profiles of real-world networks to the robustness profiles of
the network models presented in the previous section. Many numerical details regarding the energy and
the sensitivity are given in Supplementary Table S3.

4.4.1 The size of the giant component. Some of the real-world networks are composed of several
disconnected components, leading to initial R-values that are smaller than 1.0.

The ratio (Emax − Emin)/S is the largest for the CA network (27.0), followed by EUr network (14.0),
the EUp network (11.7) and finally the USp network (11.4). Targeted attacks have the biggest impact
on the Western United States power grid and the smallest impact on the co-authorship network. In
addition, the ratio (Emax − Emin)/S is in all cases higher than for model network ratios (which fall in the
range [2.4, 9.6]). Real-world networks are more easily disconnected than the instances of the random
models.

As before in Section 4.2, the most effective attack strategies are the node degree and node between-
ness attacks. The least effective attack strategy is the node closeness attack (e.g. Fig. 4(b)), which leaves
the size of the giant component nearly untouched for all real networks.

4.4.2 Efficiency. The network with the highest absolute efficiency value is the co-authorship net-
work. As before, this is due to the high link density and the presence of many cliques. Remarkably,
all four real-world networks show rapid decreases in efficiency after only ≈ 10% of their nodes are
removed. This behavior is similar to that observed for the Barabási–Albert model: in this case, the
removal of ≈ 20% of the nodes causes a large drop in efficiency. But, more importantly, the dramatic
drop in the R-value occurs for both random and (most) targeted strategies. Figure 4(f) illustrates this
effect, also seen in the Emin/Eavg ratios in the Supplementary Table S3. In conclusion, sparse real-world
networks are easily disconnected, regardless of the type of attack. As with the results in Section 4.2, the
attack with the lowest min R-value is the node betweenness attack.

5. Similarity of node-centrality measures

Centrality measures express the relative importance of nodes within a graph. Different centrality mea-
sures rank nodes differently. To quantify the similarity of centrality rankings, we define a centrality
similarity metric.

Definition 5.1 For two node rankings A = [a(1), a(2), . . . , a(N)] and B = [b(1), b(2), . . . , b(N)], MA,B(k)

is the percentage of nodes in {a(1), a(2), . . . , a(�kN�)} that also appear in {b(1), b(2), . . . , b(�kN�)}.
The measure MA,B(k) is different from the scalar correlation of topological metrics [39]. When

we compare all the nodes (k = 100%), we have a full overlap and MA,B(100%) = 1. In other words,
MA,B(k) gives the percentage of overlapping nodes from the top k% of nodes in the rankings A and B.
For instance, it reveals whether the nodes with the highest betweenness values are also those with the
highest degrees.

The results of MA,B(k) for real-world networks are given in Fig. 5. From the figure, we
observe that Mcloseness, eigenvector(k) generally has the highest value and that it is closely followed
by Mdegree, betweenness(k). On the other hand, Mbetweenness, eigenvector(k) shows that there is little overlap
between the node rankings derived from the betweenness and eigenvector centrality measures. In both
the US and the European power grid networks (Fig. 5(c) and (d)), Mdegree, betweenness(k) attains large
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Fig. 5. Similarities of centrality rankings MA,B(k) for real networks. Each plot shows the overlap of nodes (y-axis in %) from the
first k% nodes (x-axis) ranked according to centrality ranking A and the first k% nodes ranked according to centrality ranking B
for a given network.

values. On the other hand, in the citation and railway networks (Fig. 5(a) and (b)), Mcloseness, eigenvector(k)

attains large values.
The measure MA,B(k) is small when the rankings A and B differ in the nodes that are deemed central.

In such cases, both centrality measures should be used as attack strategies, since each strategy could
have a different effect in a network.

6. Robustness optimization by degree-preserving rewiring

We demonstrate the use of our robustness framework by studying changes in the metric envelope of a
network as it is rewired (through degree-preserving transformations) in order to increase or decrease its
degree assortativity [40,41].

6.1 Degree assortativity

Degree assortativity measures the tendency of links to connect nodes with similar degrees. Formally, it
is defined [40] as

ρD = 1 −
∑

i∼j(di − dj)
2

∑i=N
i=1 d3

i − (1/2L)(
∑N

i=1 d2
i )2

,
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14 of 19 S. TRAJANOVSKI ET AL.

where i ∼ j denotes a link between nodes ni and nj, di the degree of node ni and D = [d1, d2, . . . , dN ] the
degree-sequence of the network. The degree assortativity has been shown [42] to be an important indi-
cator for the epidemic spread such that assortative networks spread are more prone to the propagation
of epidemics. Moreover, the close relation between the degree assortativity and the modularity, which
is an indicator for network clusterness, has been studied in [43].

6.2 Degree-preserving rewiring

Degree-preserving rewiring [41] allows for the modification of the link architecture of a network without
changing its degree sequence. In a rewiring step, a pair of links {u, v}, {w, x} in a network G is selected
such that u, v, w and x are distinct nodes. If {u, x} ∈L(G) and {w, v} ∈L(G), {u, v} and {w, x} can be
rewired to (that is, replaced by) {u, x}, {w, v}.

6.3 Rewiring algorithm for assortativity optimization

We used the greedy degree-preserving rewiring algorithm of [44] to optimize degree assortativity. In
each iteration, the algorithm samples up to s pairs of links. If a sampled pair of links is rewirable and if
the rewiring leads to a desired change in the degree assortativity (see [41, Lemma 1]) of the network, the
change is made. If, after s sampling attempts, no such pair of links is found, the algorithm terminates.

6.4 Experiment setup

Using our simple algorithm, we maximized and minimized the degree assortativity of an Erdős–Rényi
graph as well as a Barabási–Albert graph. The number of rewirings needed to achieve high- or low-
degree assortativity can number in the hundreds or even thousands. Therefore, it is impractical to study
the robustness profiles of the networks associated with each rewiring step. For each network, we study
five snapshots: (i) a rewired network whose assortativity is fully maximized; (ii) a rewired network
whose assortativity is halfway between the fully maximized value and that of the original network; (iii)
the original network; (iv) a rewired network whose assortativity is halfway between the fully minimized
assortativity value and that of the original network; and (v) a rewired network whose assortativity is fully
minimized. Snapshots of the GER, along with corresponding energy and sensitivity changes for the giant
component and efficiency, are shown in Fig. 6. The analogues for GBA are shown in Fig. 7.

6.5 Interpretation

As assortativity is maximized, the Eavg of both the giant component and efficiency decrease (the black
lines in Figs 6 and 7). In the intermediate assortativity-maximized cases, the decrease is mild, and
what these networks lose in Eavg they gain by lowering the (Emax − Emin)/S ratio. In other words, inter-
mediate assortativity-maximized networks become less robust against random attacks, but relatively
stronger against targeted attacks. Finally, the assortativity-maximized networks display the lowest aver-
age energy Eavg for both metrics. However, these maximized networks are relatively strong to targeted
attacks, as depicted by low (Emax − Emin)/S ratios.

The situation is almost reversed when assortativity is minimized, where Eavg remains high while
(Emax − Emin)/S ratios dramatically increase: targeted attacks are more devastating for assortativity-
minimized networks than random attacks are. In addition, these intermediate disassortative networks
have slightly higher Eavg than the original networks. Finally, GER, whose assortativity is fully minimized,
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Fig. 6. The influence of degree-preserving assortativity-optimization on the robustness of an Erdős–Rényi network. Robustness
is measured relative to the giant component size (left) and the efficiency (right). In the first (top) row, a rewired network whose
assortativity is fully maximized; in the second row, a rewired network whose assortativity is halfway between the fully maximized
value and that of the original network; in the third (middle) row, the original network; in the fourth row, a rewired network whose
assortativity is halfway between the fully minimized assortativity value and that of the original network; and in the fifth (bottom)
row, a rewired network whose assortativity is fully minimized. The legend is the same as the ones in Figs 2–4.

is fragile against targeted attacks and its average energy is not particularly good. In contrast, GBA with
fully minimized assortativity is still more competitive than its less-rewired sibling.

Our observations suggest that networks whose assortativities are moderately maximized (through
degree-preserving transformations) are more tolerant to targeted attacks whilst having worse average-
case robustness. On the other hand, networks whose assortativities are moderately minimized are more
tolerant to random attacks (and less tolerant to targeted attacks). These observations match those of
Friedel and Zimmer [45], who researched the role of assortativity in protein interaction networks.
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Fig. 7. The influence of degree-preserving assortativity-optimization on the robustness of a Barabási–Albert graph. Robustness
is measured relative to the giant component size (left hand) and the efficiency (right). In the first (top) row, a rewired net-
work whose assortativity is fully maximized; in the second row, a rewired network whose assortativity is halfway between the
fully maximized value and that of the original network; in the third (middle) row, the original network; in the fourth row, a
rewired network whose assortativity is halfway between the fully minimized assortativity value and that of the original network;
and in the fifth (bottom) row, a rewired network whose assortativity is fully minimized. The legend is the same as the ones
in Figs 2–4.

7. Conclusions

Within the topological robustness framework [8,9], we have extended and detailed the concept of robust-
ness envelopes. We studied the robustness envelopes of sparse and dense instances of well-known
random classes of networks, as well as four real-world networks. Our envelope approach shows that
although networks may have similar average-case performance under attack, they may differ signifi-
cantly in their sensitivities to certain attack sequences. We also contrasted robustness envelopes of the
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studied networks to their responses when subjected to targeted attacks. The targeted attacks are all based
on node centrality measures.

We found that targeted attack strategies often lead to performance degradation beyond the limits
of the robustness envelopes that we computed, leading us to conclude that centrality-based targeted
attacks are sufficient for studying the worst-case behavior of real-world networks. In this regard, our
analysis suggests that real-world networks are susceptible to rapid degradation under targeted attacks.
The overlap between centrality rankings reveals that attack strategies based on different centrality mea-
sures may have very similar results. We argue that degree centrality and eigenvector centrality strike a
good balance between differences in attack sequences and in computational power required.

Finally, we investigated envelopes and targeted attack patterns of networks whose structures were
modified, through degree-preserving rewiring, to optimize their assortativity. We found that by slightly
increasing degree assortativity, our networks became more resilient against targeted attacks, if somewhat
less resilient against random attacks. The converse was true when decreasing degree assortativity.

An interesting question for future research is whether it is possible to design an efficient method
for increasing the worst-case robustness of a network (through rewiring) without adversely affecting its
mean robustness.

8. Supplementary data

Supplementary data are available at Journal of Complex Networks online.
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