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1
EXPLAINING A MODEL OUTPUT OF A
TRAINED MODEL

CROSS-REFERENCE TO PRIOR
APPLICATIONS

This application is the U.S. National Phase application
under 35 U.S.C. § 371 of International Application No.
PCT/EP2021/052895, filed on Feb. 7, 2021, which claims
the benefit of Furopean Patent Application No.
EP20156426.7, filed on Feb. 10, 2020. These applications
are hereby incorporated by reference herein.

FIELD OF THE INVENTION

The invention relates to a computer-implemented method
of generating explainability information, and to a corre-
sponding system. The invention further relates to a com-
puter-implemented method of enabling such generation, and
a corresponding system. The invention further relates to a
computer-readable medium.

BACKGROUND OF THE INVENTION

Deep learning methods have a proven record of accom-
plishment in generating useful, high level features out of
very low-level data, such as the colour values of single
pixels in a medical image. This eliminates the labour-
intensive need to handcraft such features, and allows for the
automatic definition of yet unknown features. Generally,
deep learning concerns the use of machine-learnable models
with multiple neural network layers, e.g., an input layer at
which an input instance to the model is presented, one or
more internal layers by which the input instance is pro-
cessed, and an output layer representing a model output, e.g.,
a classification, a regression, an image caption, a visual
question answering output, etcetera. The learned features are
typically defined through a large set of weights in a deep
neural network. Typically, earlier layers of a model recog-
nize more localized and/or low-level features whereas later
layers recognize more high-level features. The model output
can e.g. be based on a weighted combination of high-level
features.

A primary application of deep learning techniques is
image analysis, medical or otherwise. Medical image analy-
sis is used in areas like radiology and digital pathology, e.g.,
a trained model may be used to detect a clinical condition
such as a malignant tumour. In such cases, the result of
applying the model may be used to flag images for review
by a clinician, for example, or to otherwise support the
decision-making of the clinician. This is a prime example of
an application where it is important not just to get the final
model output by a trained model, but also to understand how
the model arrived at its output.

Deep neural network-type models by themselves however
are usually too large to be understood well by humans, and
instead function largely as black boxes. This makes it hard
to explain how a deep network functions and why it makes
the decisions that it makes. However, techniques are known
that can provide an explanation of a model output, for
example, in the form of highlighting parts of the image that
the model used in determining the output. Due to this
highlighting, for example, the clinician can more quickly
confirm whether the model output was correct and is sup-
ported in making their own assessment by being pointed
towards parts of the image that are likely to be relevant. For
example, in a tumour board meeting where multiple clini-
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2

cians come together to discuss often complex cases for
which a lot of information is available, getting feedback of
which parts of an image the trained model considers to be
relevant can be a useful tool to help the people focus on the
most important information, even regardless of whether the
actual model output of the trained model is actually used or
not. Generally, explanations of model outputs have various
other uses, including for model debugging and for further
automated processing, as discussed in more detail elsewhere
in this specification. Such explanation maps known in the
literature as saliency maps, pixel-attribution maps, attribu-
tion maps, or sensitivity maps.

A technique to produce visual explanations for decisions
from deep neural networks, in this case from a class of
convolutional neural network (CNN)-based models, is
known from “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization” by R. Selvaraju
et al. (available at https://arxiv.org/abs/1610.02391 and
incorporated herein by reference). The gradients of any
target concept flowing into the final convolutional layer of
the model are used to produce a coarse localization map, of
the same size as the convolutional maps at that layer,
highlighting the important regions in the image for predict-
ing the concept. The localization map is upsampled to the
input image resolution and then combined with a fine-
grained visualization to get a so-called “Guided Grad-CAM”
visualization explaining the decision of the model.

SUMMARY OF THE INVENTION

In accordance with a first aspect of the invention, a
computer-implemented method of generating explainability
information for explaining a model output of a trained model
is described, as defined by claim 1. In accordance with a
further aspect of the invention, a computer-implemented
method of enabling generation of explainability information
for a trained model is described, as defined by claim 12. In
accordance with another aspect of the invention, a system
for generating explainability information for explaining a
model output of a trained model is described, as defined by
claim 13. In accordance with a further aspect, a system for
enabling generation of explainability information for a
trained model is described, as defined by claim 14.

Various embodiments involve determining an explanation
of' a model output of a trained model for an input instance.
For example, the model output can be a classification of an
image by a convolutional neural network (CNN), a predic-
tion of a regression model, etc. The model output can also
be an image, e.g. in case the trained model is an image-to-
image translation model or a segmentation model. The
trained model can also be part of a larger model, with the
model output based on one or more outputs of internal
neurons of the larger model. This way, the behaviour of
internal neurons of the larger model may be explained. The
determination of explanations of model output is known per
se, e.g., visualization methods such as Grad-CAM can show
the location in an image of those features that are most
important in generating the model output.

As the inventors realized, however, the explanations
given by current techniques may not be sufficiently infor-
mative, in particular to domain experts. Current visualiza-
tion methods for images can highlight parts of an input
image that are used by a model to determine the model
output, but these parts are typically a mix of many separate
cues. Existing visualization methods are also sometimes
used to visualize parts of an input image relevant for
particular high-level features of the model, but also in this
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case, high-level features of the model are not necessarily
features that are recognized as such by a domain expert. For
example, the features may be abstract features that are useful
for the model to determine its output but much less so for a
domain expert to interpret the image and reach their own
conclusion. The same principle applies when using the
visualization, e.g., the determined mask, for further auto-
mated processing: the parts of the image most useful for
such processing may not correspond to the parts of the image
relevant for the trained model to determine its model output.

Accordingly, the inventors envisaged to make explana-
tions of model outputs more informative by providing
techniques to explain them in terms of the presence of a
given set of potentially relevant characteristics. Generally, a
characteristic may be any aspect of which it is possible to
indicate a presence in the input instance. For example, a
characteristic can be any particular type of object that can be
present at a particular location in the input instance (e.g., a
cyst, a tumour, a cell nucleus, a lymphocyte, a necrotic
tissue, etc.), or a particular characteristic that an object
present in the input instance may have (e.g., dark, noisy,
spiky, etc.). The presence of the characteristic can also be
amount of presence in the input instance overall or at
respective positions in the input instance (e.g., a cell or
nucleii density, a perfusion in tissue, etc.). The characteris-
tics may be selected because of their expected relevance to
the model output, e.g., manually by domain experts, auto-
matically by correlating model outputs with characteristic
presences, etc. The words “aspect” and “characteristic” will
be used interchangeably throughout this specification.

In order to be able to provide feedback for the model in
terms of these potentially relevant characteristics, various
embodiments make use of aspect recognition models for
these respective characteristics. In many cases, these aspect
recognition models can be trained and used completely
independently from the trained model. An aspect recognition
model for a particular characteristic may be configured to
indicate a presence of that characteristic in an input instance
(typically, the same type of input instance as for the trained
model itself). In its most basic form, an aspect recognition
model can provide an overall indication of the presence of
the characteristic, e.g., of whether or not, or to what extent,
the characteristic is present in the input instance. For
example, the aspect recognition model can be configured to
determine whether or not a cyst is visible in an input image.
An aspect recognition model can also indicate where in the
input instance the given characteristic is present, e.g., by
indicating a part of the input instance representing the
characteristic in various ways that are known per se, e.g., by
means of a segmentation or a bounding box.

As the inventors realized, presence indicators by aspect
recognition models may provide a particularly appealing
way to provide information about input instances, either to
a user or to another system component. For example, in
many application domains, semantic segmentation models
are applied successtully in practice to highlight which pixels
of an image belong to a certain characteristic, e.g., to assign
pixels to a particular object or characteristic. Similarly, in
many applications, localization and detection models are
used successfully to draw bounding boxes in images indi-
cating where in an image an object or characteristic resides.
In many cases, given a presence indicator of an aspect
recognition model, a user is able to see very quickly whether
or not the presence is correctly indicated or not, instead of,
e.g., having to scan a full image for presence of the char-
acteristic. Thus, by applying aspect recognition models to
indicate presence of characteristics that are were relevant for
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the trained model in determining its model output, an
informative and intuitive way of explaining the model
output may be obtained.

Unfortunately, when applied to the input instance itself,
an aspect recognition model would just indicate the presence
of the characteristic in the input instance, regardless of the
model output. Interestingly, however, the inventors envis-
aged to use a saliency method to link the presence indication
of the aspect recognition model to the model output of the
trained model. The saliency method may determine a
masked representation of the input instance, representing
those elements of the input instance relevant to the model
output. This representation will be referred to throughout
this specification as a “source” representation. The saliency
method will be described in greater detail below; for now,
Guided Grad-CAM can be taken as an example. The source
representation may be mapped to the aspect recognition
model, thereby obtaining what will be referred to throughout
this specification as a “target” representation. The aspect
recognition model can then be applied to the target repre-
sentation, thus obtaining a presence indicator that indicates
a presence of the characteristic in the input instance insofar
as it is relevant to the model output. In that sense, the
presence indicator provides an explanation of the model
output in terms of that characteristic.

Accordingly, given one or more aspect recognition mod-
els for various characteristics that may contribute to the
model output, e.g., aspect recognition models for indicating
cell nuclei, lymphocytes, necrotic tissue, etcetera, their
respective presence insofar as relevant for the model output
may be determined in three main steps. First, use a Grad-
CAM-like methods to identify source features that contrib-
ute most to the model output of the trained model. Second,
map the source features to the aspect recognition model.
Finally, apply the aspect recognition model to the target
features in the regular way. The generated output indicates
those characteristics that contribute most to the trained
model’s output. These presence indications can then be
output, e.g., highlighted in one or more copies of an input
instance. This way, an explanation of the model output can
be provided in terms of concepts that are useful beyond the
trained model itself to understand why a particular model
output belongs to a certain input instance.

For example, various embodiments enable the visualiza-
tion of relevant characteristics in such a way that Al spe-
cialists, but especially also application domain specialists
such as medical specialists, are able to analyse them, since
they are recognized and expressed in medical terms. For
example, this may allow more efficient medical decision
making, but can also allow the trained model to be refined
further, e.g., based on observing unwanted features (indi-
cating a model that is overfitted or has learned e.g. hospital-
specific features) or based on observing that one or more
relevant characteristics are not used (e.g., indicating that the
model should be re-trained with additional training data
directed to those characteristics).

For example, as a saliency method, the Guided Grad-
CAM method of Selvaraju et al. may be used. This method
operates on images and, like several alternatives discussed
throughout this specification, determines a saliency map at
the input layer of the neural network. Thus, the masked
source representation of the input image can be obtained by
determining the saliency map for the input image at the input
layer using Guided Grad-CAM or a similar saliency method,
and then masking the input image by the saliency map to
obtain the masked source representation. This masked
source representation can then be identity mapped to the
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input layer of an aspect recognition model by setting the
masked target representation to be equal to the masked
source representation, at which point the aspect recognition
model can be applied to the masked target representation to
obtain a presence indication for the characteristic.

In preferred embodiments, however, the source layer at
which the source representation of the input instance is
defined, is an internal layer of the trained model. Likewise,
the target layer at which the target representation of the input
instance is defined, may be an internal layer of the aspect
recognition model. The use of internal layers is particularly
beneficial since later layers of the model typically represent
the information that the model relied on to produce a model
output is in a more compressed form and/or at a more
abstract level than at the input layer. For example, particular
nodes or groups of nodes at a layer of the neural network
may represent particular semantic concepts that the model
has recognized. For example, a particular shape or combi-
nation of shapes may be used as a cue for increased blood
thickness, which may then be used in determining a model
output, e.g., presence of a clinical indication.

Thus, as a consequence of using internal layers, the
information that is mapped to the target layer of the aspect
recognition model may better semantically represent the
information used by the model to determine a model output,
or in other words, may provide a more accurate signal for
use by the aspect recognition model to recognize character-
istics. Another way of looking at this is that, the more layers
there are between the model output and the layer at which
the masked source representation is determined, the more
information may be lost in the saliency method by going
back from the model output to that layer. Accordingly, by
using internal layers, it may be possible to go back far
enough so that sufficiently low-level information is available
to recognize the presence of characteristics of the input
instance, but not so far that accurate detection of the
characteristics is prevented. Which internal layers to use is
also discussed elsewhere in this specification.

When using internal layers, several options are available
for obtaining a target representation for the input instance to
which an aspect recognition model can be applied. In some
embodiments, the target representation can be obtained by
applying a mapping model between the source and target
layers. For example, the mapping model for an aspect
recognition model may be trained to produce latent repre-
sentations for that aspect recognition model given latent
representations of the trained model. Accordingly, the map-
ping model can be trained so as to find a mapping that
provides the most accurate conversion between the latent
representations. For example, when the source and target
layers are convolutional layers, an accurate mapping model
can be obtained by using image-to-image translation model
such as a U-net model, as known in the art per se, allowing
to exploit the spatial correspondence properties of the con-
volutional layers. Other types of mapping model are also
possible depending on the type of model used, as long as
there is sufficient mutual information between source and
target representations of an input instance. In particular, the
combination of using internal layers of the trained model
and aspect recognition models, and having a mapping model
them, has the advantage that such a model can be easier to
train, e.g., because it gets a more high-quality input signal in
which different features of the input instance are already
distinguished.

Another appealing option for obtaining a target represen-
tation, is to have the target layer of the trained model and
preceding layers be shared with an aspect recognition
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model. In this case, the target representation and the source
representation may coincide, e.g., the identity mapping is
used to obtain the target representation. For example, the
trained model and one, more, or all aspect recognition
models may share a number of convolutional layers, after
which one or more additional layers are used by their
respective models to reach their respective model outputs.
The models can be jointly trained to obtain the parameters
of the shared layers. Accordingly, a particularly good align-
ment between the trained model and the aspect recognition
models can be obtained. However, using shared layers is of
course not always possible, e.g., in case pre-existing models
are used.

Concerning the characteristics for which aspect recogni-
tion models can be used, generally, any characteristic whose
presence can be indicated may be used. In fact, the tech-
niques herein are typically agnostic of the semantic contents
of the various characteristics. Instead, the various charac-
teristics may be selected by a user, and the aspect recogni-
tion models may be trained based on user annotations of
input instances. For example, depending on the aspect
recognition model, a user may indicate whether the charac-
teristic is present, provide a bounding box for the charac-
teristic, highlight pixels of an image belonging to the char-
acteristic, or provide an amount of presence of the
characteristics for pixels of the image.

Although in typical embodiments, the techniques pro-
vided herein may be applied to images, also other types of
sensor data are possible, e.g., obtained from a sensor. In
particular, an input instance may represent a time series of
one or more sensor measurements. In both cases, convolu-
tional-type models can be used that typically preserve a
correspondence between representations of the input
instance at respective layers, e.g., spatial correspondence in
the case of images, or temporal correspondence in the case
of time series. To such data, known saliency techniques may
be readily applied.

Optionally, the trained model may be a medical image
classification model for detecting a clinical indication. The
aspect recognition model may be in this case be configured
to indicate presence of respective contributory factors to the
clinical indication. Examples of such clinical indications (in
other words, clinical characterizations or clinical findings)
include tumour grades and Gleason scores. The contributing
factors may be particular objects or other aspects of input
images that a clinician may use to signal such a clinical
indication. Accordingly, the clinician can get an explanation
of why a clinical indication was detected in terms of the
contributing factors that he/she use himself/herself, allowing
the clinician more easily check whether the model output is
correct or make their own assessment.

Optionally, one or more aspect recognition models for
respective characteristics may be configured to indicate a
part of the input instance representing the characteristic. For
example, an aspect recognition model may provide, per
feature of the input instance (e.g., per pixel), an indication
whether the feature belongs to the characteristic. If a per-
feature indication (e.g., per pixel) is given, such a model is
generally referred to as a semantic segmentation model, or
simply a segmentation model. The indication can also be
given as a bounding box. Such models are often called
localization models. An aspect recognition model may also
be able to provide multiple presence indications of multiple
objects, in some cases even of multiple types of character-
istic; such models are also known as detection models.
Optionally, the aspect recognition model is configured to
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indicate, for respective parts of the input instance, respective
amounts of presence of the characteristic.

Optionally, the characteristics indicated to be present may
be highlighted in the input instance in a sensory perceptible
manner to a user. For example, the input instance may be
shown or visualized on a screen, with characteristics indi-
cated by an aspect recognition model highlighted, e.g. a
bounding box or other polygon drawn around a region of the
input instance representing the characteristic, or a segmen-
tation model shown alongside the input instance or used to
filter the input instance by. Accordingly, the model output of
the trained model may be explained to a user.

The explanation of the model output may also be auto-
matically processed. For example, the input instance may be
annotated with characteristics indicated by the aspect rec-
ognition model, e.g., in the form of the model outputs of
these models. The annotation can be in the form of yes/no-
flags in the metadata of the input instance, or by storing
coordinates of the bounding box, etcetera. In various
embodiments, for multiple input instances having the same
model output, a count is determined of a number of times a
characteristic is indicated to be present. Accordingly, statis-
tics can be obtained of which characteristics are used over
many input instances to reach a certain model output, e.g.,
a certain classification. Such reporting provides valuable
debugging information about the model that can be used for
example to refine the model design or its training dataset.
Annotating input instances by their characteristics also
allows to determine outliers, for example, input instances
that are uncommon in the combination of characteristics
used to determine a given model output. These outliers can
for example be further analysed to find potential misclassi-
fications, or areas of the input space underrepresented in the
training dataset.

Optionally, when using a mapping model to map an
internal source layer to an internal target layer, the choice of
source layer, target layer, and/or mapping model may be
made automatically. To this end, multiple mapping models
for respective layers of the trained model and/or of the
aspect recognition model may be trained. A mapping model
of the multiple trained mapping models may be selected
based at least in part on performance of the multiple trained
mapping models on a test dataset, e.g., in terms of accuracy
of the mapping model to map the source layer to the target
layer. In particular, the choice of layer may represent a
trade-off between preserving as much information of the
model output by selecting a later layer, and obtaining
information at a sufficiently low level to allow the aspect
recognition model to work and/or to preserve sufficient
correlation between the source and target layers. By training
the multiple mapping models, an optimal selection may be
made.

It will be appreciated by those skilled in the art that two
or more of the above-mentioned embodiments, implemen-
tations, and/or optional aspects of the invention may be
combined in any way deemed useful.

Modifications and variations of any system and/or any
computer readable medium, which correspond to the
described modifications and variations of a corresponding
computer-implemented method, can be carried out by a
person skilled in the art on the basis of the present descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention will be apparent
from and elucidated further with reference to the embodi-
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ments described by way of example in the following
description and with reference to the accompanying draw-
ings, in which:

FIG. 1 shows a system for enabling to explain model
outputs of a trained model;

FIG. 2 shows a system for explaining a model output of
a trained model for an input instance;

FIG. 3a shows a detailed example of a model for use as
a trained model or aspect recognition model; in this case, a
convolutional network;

FIG. 3b shows a detailed example of a model for use as
a trained model, aspect recognition model, or mapping
model; in this case, a fully convolutional network;

FIG. 4a shows a detailed example of how to train a
mapping model for mapping a source representation of a
trained model to a target representation of an aspect recog-
nition model, thereby enabling to explain model outputs of
the trained model;

FIG. 4b shows a detailed example of how to use a
mapping model and an aspect recognition model to deter-
mine a presence of an aspect relevant to model output of a
trained model, thereby explaining the model output;

FIG. 5a shows a detailed example of a trained model and
an aspect recognition model that share internal layers;

FIG. 56 shows a detailed example of how to use an aspect
recognition model that shares internal layers with a trained
model, to determine a presence of a characteristic relevant to
model output of the trained model;

FIG. 6 shows a computer-implemented method of
explaining a model output of a trained model for an input
instance;

FIG. 7 shows a computer-implemented method of
enabling to explain model outputs of a trained model;

FIG. 8 shows a computer-readable medium comprising
data.

It should be noted that the figures are purely diagrammatic
and not drawn to scale. In the figures, elements which
correspond to elements already described may have the
same reference numerals.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1 shows a system 100 for enabling generation of
explainability information for a trained model. The system
100 may comprise a data interface 120 and a processor
subsystem 140 which may internally communicate via data
communication 121. Data interface 120 may be for access-
ing a trained model 040 configured to determine a model
output for an input instance. The trained model may com-
prise at least a source layer. The source layer may be an input
layer or an internal layer. An example of a trained model is
described with respect to FIG. 3a. Data interface 120 may be
for accessing one or more aspect recognition models for
respective characteristics of input instances of the trained
model. By way of example, two aspect recognition models
051, 052 are shown although it is also possible to use one,
at least three, or at least five aspect recognition models, for
example. An aspect recognition model 051, 052 may be
configured to indicate a presence of the characteristic in an
input instance. The aspect recognition model 051, 052 may
comprise at least a target layer. The target layer may be an
input layer or an internal layer. An example of an aspect
recognition model is described with respect to FIG. 354. Data
interface 120 may be for accessing a training dataset 010
comprising multiple training instances.

The trained model 040, aspect recognition models 051,
052, and/or mapping models trained by system 100 may be
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for use to explain a model output of a trained model, e.g.,
according to a method described herein, e.g., by system 200
of FIG. 2. System 100 may itself be used to explain model
outputs of trained models, e.g., systems 100, 200 may be
combined into a single system.

The processor subsystem 140 may be configured to,
during operation of the system 100 and using the data
interface 120, access data 010, 040, 051-052. For example,
as shown in FIG. 1, the data interface 120 may provide
access 122 to an external data storage 021 which may
comprise said data 010, 040, 051-052. Alternatively, the data
may be accessed from an internal data storage which is part
of the system 100. Alternatively, the data may be received
via a network from another entity. In general, the data
interface 120 may take various forms, such as a network
interface to a local or wide area network, e.g., the Internet,
a storage interface to an internal or external data storage, etc.
The data storage 021 may take any known and suitable form.

Processor subsystem 140 may be configured to, during
operation of the system 100 and using the data interface 120,
train mapping models between the trained model 010 and
the one or more aspect recognition models 051-052. A
mapping model between the trained model 010 and an
aspect recognition model 051-052 may be trained. To this
end, for a training instance of the training dataset 040, the
trained model 010 may be applied at least in part to the
training instance to determine a source representation of the
training instance at the source layer of the trained model
010. Further, the aspect recognition model 051, 052 may be
applied at least in part to the training instance to determine
a target representation of the training instance at the target
layer of the aspect recognition model. The mapping model
may be trained to output the target representation given the
source representation. An example of training a mapping
model is discussed with respect to FIG. 4a.

As an optional component, the system 100 may comprise
an image input interface or any other type of input interface
(not shown) for obtaining sensor data from a sensor, such as
a camera. Processor subsystem 140 may be configured to
obtain one or more training instances of the training dataset
based on sensor data obtained via the sensor interface. The
input interface may be configured for various types of sensor
signals, e.g., video signals, radar/LiDAR signals, ultrasonic
signals, etc.

Various details and aspects of the operation of the system
100 will be further elucidated with reference to FIGS. 3-5,
including optional aspects thereof.

In general, the system 100 may be embodied as, or in, a
single device or apparatus, such as a workstation, e.g., laptop
or desktop-based, or a server. The device or apparatus may
comprise one or more microprocessors which execute
appropriate software. For example, the processor subsystem
may be embodied by a single Central Processing Unit
(CPU), but also by a combination or system of such CPUs
and/or other types of processing units. The software may
have been downloaded and/or stored in a corresponding
memory, e.g., a volatile memory such as RAM or a non-
volatile memory such as Flash. Alternatively, the functional
units of the system, e.g., the data interface and the processor
subsystem, may be implemented in the device or apparatus
in the form of programmable logic, e.g., as a Field-Program-
mable Gate Array (FPGA) and/or a Graphics Processing
Unit (GPU). In general, each functional unit of the system
may be implemented in the form of a circuit. It is noted that
the system 100 may also be implemented in a distributed
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manner, e.g., involving different devices or apparatuses,
such as distributed servers, e.g., in the form of cloud
computing.

FIG. 2 shows a system 200 for explaining a model output
of'a trained model for an input instance. The system 200 may
comprise a data interface 220 and a processor subsystem 240
which may internally communicate via data communication
221. Data interface 220 may be for accessing a trained
model 040 configured to determine a model output for an
input instance. The trained model 040 may comprise at least
a source layer. The source layer may be an input layer or an
internal layer. Instead or in addition, data interface 220 may
be for accessing one or more aspect recognition models for
respective characteristics of input instances of the trained
model. By way of example, the figure shows two aspect
recognition models 051, 052, but it is also possible to have,
e.g., one, three, or more aspect recognition models. An
aspect recognition model for a given characteristic may be
configured to indicate a presence of the characteristic in an
input instance. The aspect recognition model may comprise
at least a target layer. The target layer may be an input layer
or an internal layer. The trained model 040 and/or aspect
recognition models 051, 052, and/or any mapping models
used by system 100 may be obtained from a system for
enabling to explain model outputs of a trained model, e.g.,
system 100 of FIG. 1.

The processor subsystem 240 may be configured to,
during operation of the system 200 and using the data
interface 220, access data 040, 051, 052. For example, as
shown in FIG. 2, the data interface 220 may provide access
222 to an external data storage 022 which may comprise said
data 040, 051, 052. Alternatively, the data may be accessed
from an internal data storage which is part of the system 200.
Alternatively, the data may be received via a network from
another entity. In general, the data interface 220 may take
various forms, such as a network interface to a local or wide
area network, e.g., the Internet, a storage interface to an
internal or external data storage, etc. The data storage 022
may take any known and suitable form.

Processor subsystem 240 may be configured to, during
operation of the system 200 and using the data interface 220,
obtain an input instance. Processor subsystem 240 may
further apply the trained model 040 to the input instance to
obtain a model output. This may comprise obtaining a
source representation of the input instance at the source
layer of the trained model. Processor subsystem 240 may
further apply a saliency method to obtain a masked source
representation of the input instance at the source layer of the
trained model comprising elements of the source represen-
tation relevant to the model output. For an aspect recognition
model for a given characteristic, e.g., model 051 or 052,
processor subsystem 240 may map the masked source
representation to the target layer of the aspect recognition
model 051, 052, to obtain a target representation for the
input instance at the target layer. Processor subsystem 240
may apply the aspect recognition model 051, 052 for the
given characteristic to the target representation to obtain a
model output indicating a presence of the given character-
istic relevant to the model output of the trained model.
Examples of determining such model outputs are discussed
with respect to FIGS. 4b, 5.

Processor subsystem 240 may output, as the explainabil-
ity information, the characteristics indicated to be present by
the applied aspect recognition models 051, 052. Although
the characteristics are in many cases output along with the
model output of the trained model, this is not needed. For
example, the characteristics may be highlighted, e.g., their
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locations in the input instances shown, in a sensory percep-
tible manner to a user. For example, a graphical user
interface may show the parts of the input instance where
relevant characteristics were recognized, overlayed on the
input instance with a label, e.g., using a colour coding or
other encoding to identify the type of characteristic, in other
words, to identify which aspect recognition model recog-
nized the characteristic. Outputting the characteristics may
also be in the form of annotating the input instance with said
indicated characteristics, e.g., storing the input instance
along with the annotation(s) using data interface 220. As
another example, for multiple input instances (e.g. multiple
images) having the same model output, a number of times a
characteristic is indicated to be present may be counted and
reported, e.g., to another processor subsystem or to the user.

As an optional component, the system 200 may comprise
an image input interface 260 or any other type of input
interface for obtaining sensor data 224 from a sensor, such
as a camera 072. Processor subsystem 240 may be config-
ured to determine the input instance from the sensor data
224. For example, the camera may be configured to capture
image data 224, processor subsystem 240 being configured
to obtain the image data via data communication 223 and use
it as input instance. The input interface may be configured
for various types of sensor signals, e.g., video signals,
radar/LiDAR signals, ultrasonic signals, etc. The input
instance may comprise a time series of such sensor mea-
surements, for example.

As an optional component, the system 200 may comprise
a display output interface 280 or any other type of output
interface for outputting the characteristics indicated to be
present by the applied object recognition models 051, 052 to
a rendering device, such as a display 290. For example, the
display output interface 280 may generate display data 282
for the display 290 which causes the display 290 to render
the indicated characteristics in a sensory perceptible manner,
e.g., as an on-screen visualisation 292.

Various details and aspects of the operation of the system
200 will be further elucidated with reference to FIGS. 3-5,
including optional aspects thereof.

In general, the system 200 may be embodied as, or in, a
single device or apparatus, such as a workstation, e.g., laptop
or desktop-based, or a server. The device or apparatus may
comprise one or more microprocessors which execute
appropriate software. For example, the processor subsystem
may be embodied by a single Central Processing Unit
(CPU), but also by a combination or system of such CPUs
and/or other types of processing units. The software may
have been downloaded and/or stored in a corresponding
memory, e.g., a volatile memory such as RAM or a non-
volatile memory such as Flash. Alternatively, the functional
units of the system, e.g., the data interface and the processor
subsystem, may be implemented in the device or apparatus
in the form of programmable logic, e.g., as a Field-Program-
mable Gate Array (FPGA) and/or a Graphics Processing
Unit (GPU). In general, each functional unit of the system
may be implemented in the form of a circuit. It is noted that
the system 200 may also be implemented in a distributed
manner, e.g., involving different devices or apparatuses,
such as distributed servers, e.g., in the form of cloud
computing.

FIG. 3a shows a detailed, yet non-limiting, example of a
model for use as a trained model or aspect recognition
model. The model shown in this figure is a convolutional
network, also known as a convolutional neural network. The
model determines a model output MO, 330, for an input
instance 11, 310. For example, input instance Il may be an
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image, e.g., represented as a MxNxc-sized matrix, where the
number of channels ¢ can be c¢=1 in case of a greyscale
image, ¢=3 in case of an RGB image, etcetera. The described
techniques are not limited to images though, e.g., other types
of sensor data such as a time series of sensor measurements
are also possible. In some cases, such other sensor data, e.g.,
recorded sound data, may be represented as an image for
processing as described herein. Although the explanation
here focusses on 2D data, e.g., images, also 1D-data, 3D
data, etc. can be processed by convolutional networks.

The model output MO may represent one or more values,
e.g., classification scores for one or more classes in the case
of a classification model, a prediction of a quantity in the
case of a regression model, etc. The model output can also
be an image, e.g., in the case of an image-to-image trans-
lation model or segmentation model. The trained model can
be part of a larger model (not shown in this figure), in which
case the model output can be the activation of a particular
internal neuron of the larger model, or a combination of
activations of multiple internal neurons, such as a sum or
average. Accordingly, characteristics influencing internal
neurons of the larger model may be studied.

Generally, the term convolutional network may be used to
refer to any neural network that comprises at least one
convolutional layer. Various architectures for convolutional
networks are known and can be applied. As an illustrative
example, a convolutional network architecture is shown that
comprises a convolutional part followed by a dense part. The
convolutional part comprises one or more layers CL1,
340-1, up to CLKk, 340-2. The first layer may process input
instance II into a first convolutional representation CR1,
320-1 that can then be input into a second layer, etcetera.
The final layer CLk of the convolutional part may then
output a convolutional representation CRk, 320-2, of the
input instance II. The layers of the convolutional part can for
instance be convolutional layers, pooling layers, RelLU
layers, etc. For example, the convolutional part may com-
prise one or more groups each comprising a convolutional
layer, followed by a ReLLU layer, followed by an optional
pooling layer. For example, the number of convolutional
layers may be at least five, or at least ten.

The layers of the convolutional part may generate more
and more abstract representations of the input instance. A
representation of the input instance II at such a layer, in other
words, the set of values output at that layer by the neural
network given the input instance, typically preserves a
spatial correspondence with the input instance, e.g., a MxNx
c-sized input may be represented at a layer by a M'xN'xc'-
sized volume, where the pixels (X', y'»* ) correspond to the
original input pixels (X, y»'), but typically at a different
resolution; and the feature vectors (*+"s, ¢') per pixel replace
the original feature vector (**s, ¢) of the input pixels. In
many cases, subsequent convolutional layers may have
decreasing spatial dimensions so that output CRk of the
convolutional part has spatial dimensions M'xN' smaller
than the input instance. A M'xN'-sized slice of an internal
layer volume typically represents an output of a so-called
filter applied to the values at the previous layer. For example,
the number of filters at a layer can be at most or at least 8,
at most or at least 32, or at most or at least 128.

A second part of the convolutional network may deter-
mine the model output MO based on the output CRk of the
convolutional part of the network. The example shows a
second part comprising one or more fully connected, or
“dense”, layers. Shown in the figure are dense layers DL1,
340-3, up to DLm, 340-4. Generally, in such layers, the input
instance II is represented as a feature vector, which may be
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facilitated, e.g., by reshaping a feature image output by the
convolutional part, and/or by a repetition of cropping and
resolution decrease on the original input instance II. In some
cases, a single dense layer suffices, but the number of dense
layers can also be bigger, e.g., at least three or at least five.

FIG. 3b shows another detailed, yet non-limiting,
example of a model for use herein. The model shown in this
figure is a so-called fully convolutional network. Such a
model transforms an input instance in the form of an input
volume 1V, 310, e.g., an input image, into a model output in
the form of an output volume OV, 370, in a sequence of
layers that each preserve a spatial correspondence with the
input instance, e.g., convolutional layers, pooling layers, and
ReL.U layers. For example, the output volume OV may
represent a segmentation of an input image II, or, more
generally, the model may be trained to perform any kind of
image-to-image translation.

As illustrated in the figure, a fully convolutional network
may comprise a contracting part and an expansive part. The
contracting part may comprise one or more layers, e.g.,
layers CL1', 350-1, up to CL £', 350-2, that produce respec-
tive representations CR1", 390-1 up to CL 1", 390-2, of the
input instance II of which the respective spatial dimensions
are smaller than or equal than that of the preceding layers
(although the depth, e.g., the number of filters, can increase).
Accordingly, the result of the contracting part may be a
representation CL "' of the input instance of reduced spatial
dimensions. After the contracting part, an expansive part
may be applied, e.g., comprising layers EL1, 350-3, up to
ELn, 350-4, resulting in respective representations of the
input instance. For example, layer EL.1 may result in rep-
resentation ER1, 390. The final layer of the expansive part
may result in output volume OV. Generally, subsequent
layers of the expansive part may result in respective repre-
sentations with equal of increasing spatial dimensions, so
that output volume OV has greater spatial dimensions than
representation CLt'. To increase spatial dimensions, for
example, upsampling layers can be used. In various appli-
cations, such as semantic segmentation, output volume OV
may be configured to have the same spatial dimensions as
the input volume IV; however, this is not necessary. Models
comprising a contracting and an expansive part may be
generally referred to as encoder-decoder models.

In particular, in various embodiments, one or more
respective layers of the contracting part of the model may be
connected with one or more respective layers of the expan-
sive part of the model via so-called skip connections. For
example, the connected layers may be of the same spatial
dimensions, e.g., MxNxc, and MxNxc,, respectively. In a
skip connection, the outputs of the contractive and expan-
sive representations may be concatenated, e.g., to obtain a
MxNx(c,+c,)-sized output to be processed further in the
network. The contractive and expansive representations do
not need to be of the same size, e.g., the smaller represen-
tation may be rescaled to match the larger representation or
the other way around, e.g., by pooling or by repeating pixels.

Generally, such models with contracting and expansive
parts and skip connections may be referred to as U-net
models since their architectures can be visualized as a U
shape, in which the layers of the contracting part form the
left part and the layers of the expansive part form the right
part. Various such models are known per se and can be
applied here. An example of a U-net model is presented in
O. Ronneberger et al., “U-Net: Convolutional Networks for
Biomedical Image Segmentation” (available at https://
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arxiv.org/abs/1505.04597 and incorporated herein by refer-
ence). Another known example is the so-called ResNet, or
Residual Network.

FIGS. 4a-45 demonstrate explainability techniques using
a mapping model. An input instance I, 410, may be pro-
cessed by a trained model TM, 440, to obtain a model output
MO. FIG. 4b shows a detailed, yet non-limiting example of
how an aspect presence indicator API', 471, indicating a
presence of a given characteristic relevant to the model
output MO, can be determined. To this end, a saliency
method may be used to obtain, at a layer of the trained
model, a masked source representation MSR, 480, of the
input instance Il comprising elements of the input instance
at that layer of the trained model relevant to the model
output MO. The masked source representation MSR may
then be mapped to a target layer of an aspect recognition
model ARM, 451, for the given characteristic. By recogniz-
ing the characteristic in the masked source representation,
which contains information from the input instance relevant
to the model output MO, the aspect recognition model may
indicate a presence of the given characteristic which is
relevant to the model output MO. FIG. 4a shows a detailed,
yet non-limiting example of how such a mapping model
MM, and/or the trained model TM and aspect recognition
model ARM, may be trained.

Shown in the figures is a trained model TM, 440, con-
figured to determine a model output MO, 430, for an input
instance I, 410. Similarly to FIG. 34, input instance II may
be an image, sensor data represented as an image, or various
other kinds of data. In various embodiments, model TM can
be a classification model. In this case, model output MO may
represent one or more classification scores for respective
classes into which the input instance II may be classified,
e.g., one, two, or more classes. Various other types of model
outputs MO are also possible, e.g., a prediction of a quantity
in case the model is a regression model; a caption in case of
a captioning model, an answer in case of a visual question
answering model, etc. For example, trained model TM may
be trained for classification of malignant versus benign
tumours; for tumour grading or prognosis, etc. The model
output MO can also be an output volume, e.g., an output
image, e.g., in the case of an image-to-image translation
model, a segmentation model, etc.

Generally, trained model TM can be any kind of model for
which it is possible to apply a saliency method to determine
source representation elements, at the input layer or an
internal layer of the model, relevant to the model output MO.
For example, trained model TM can be a neural network,
such as a convolutional network as discussed with respect to
FIG. 3a or FIG. 3b. An appropriate type of trained model
may be chosen based on the type of input instance and/or
model output. The trained model TM and other trained
models described herein are typically parameterized by a set
of parameters, e.g., weights of nodes in the case of a neural
network. For example, the number of layers of the model
may be at least 5 or at least 10, and the number of nodes
and/or weights may be at least 1000 or at least 10000. It is
beneficial from the point of view of efficiency of training to
use models amenable to gradient-based optimization, e.g.,
that are continuous and/or differentiable in its set of param-
eters.

Also shown in the figures is an aspect recognition model
ARM, 451. As illustrated in FIG. 4a, when applied to an
input instance II of the trained model TM, aspect recognition
model ARM may be configured to determine an aspect
presence indicator API, 470, indicating a presence of a given
characteristic in the input instance II. The characteristic that
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model ARM can recognize can be an object or other char-
acteristic of the input instance that is expected to be poten-
tially relevant to the model output MO of the trained model
TM, e.g., as chosen by a domain expert. It will be explained
with respect to FIG. 45 how the aspect recognition model
ARM can be used in combination with trained model TM to
obtain an aspect presence indicator API' that does not
indicate any presence of the given characteristic, but that
specifically outputs a presence of the given characteristic
relevant to the model output MO of the trained model.

Similarly to trained model TM, any type of aspect rec-
ognition model ARM can be used that is able to determine
an aspect presence indicator API of the given type and that
has an input or internal layer as used below. Several types of
aspect presence indicator and possible corresponding aspect
recognition models ARM are now discussed.

In some embodiments, aspect recognition model ARM
may indicate whether or not the characteristic is present in
the input instance 1, e.g., without indicating any particular
part of the input instance representing the characteristic. For
example, such an aspect recognition model ARM can be
trained as a binary classifier, with labels indicating whether
or not the characteristic is present in respective input
instances, or as a one-class classifier. For example, an aspect
recognition model of this type can be a convolutional
network, e.g., as in FIG. 3a.

In some embodiments, aspect recognition model ARM
may indicate a part of the input instance II representing the
characteristic. Such an aspect recognition model may be
referred to generally as a segmentation model. As a specific
example, the aspect recognition model ARM may return a
map indicating, for separate pixels of an input image,
whether or not that pixel belongs to the characteristic or not.
Such a model is sometimes called semantic segmentation
models. For example, a fully connected network can be used
in this case, e.g., as in FIG. 3b. The model may also indicate
an amount or degree of presence per part of the input
instance, e.g., per pixel of an input image, for example, as a
value in the domain [0,1].

The model ARM may also indicate a part of the input
instance II in the form of coordinates of a bounding box,
e.g., the model may be a localization or detection model.
Also for these cases, various architectures can be used as
known per se, including convolutional networks.

Also shown in the figures is a mapping model MM, 460,
between a source layer of the trained model TM and a target
layer of the aspect recognition model ARM. The source and
target layers can be input or internal layers of their respec-
tive model. If the source and target layers are input layers,
then the mapping model MM is optional, and instead, the
identity mapping (or another given mapping, e.g., from
colour to greyscale) from the source to the target layer can
be used.

Generally, the source layer may be defined by dividing the
trained model TM into a first part TM-1, 440-1, before the
source layer (which may be empty if the source layer is the
input layer) and a second part TM-2, 440-2, after the target
layer. Accordingly, generally, trained model TM may be
configured to determine model output MO by applying first
part TM-1 of the trained model to an input instance II to
obtain source representation SR, 420, of the input instance
II at the source layer, and applying second part TM-2 to
source representation SR to obtain model output MO. For
example, if the convolutional network of FIG. 3a is used as
trained model, then representation CRk of FIG. 3a may be
used as source representation, or a representation at an
earlier layer of the convolutional part. Masked source rep-
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resentation MSR, e.g., can be a M'xN'xc'-sized volume
comprising ¢' filter outputs of size M'xN'.

Similarly, the target layer may be defined by dividing the
aspect recognition model ARM into a first part ARM-1,
451-1 (which may be empty if the target layer is the input
layer), and a second part ARM-2, 451-2, the model being
configured to determine aspect presence indicator API by
determining target representation TR of an input instance 11
at the target layer of the aspect recognition model by
applying first part ARM-1 and then determining the aspect
presence indicator API therefrom by applying second part
ARM-2. For example, if the fully convolutional network of
FIG. 34 is used as an aspect recognition model, a layer from
the expansive part of the network may be used.

Concerning the selection of which source layer and which
target layer to use, there are several preferred choices.
Generally, since a mapping model is to be learned from the
source layer to the target layer, sufficiently strong mutual
information between the source representation SR and target
representation TR of a given input instance II needs to be
available. On the other hand, the features represented at the
source and target layers need to be sufficiently abstract, and
preferably also at a similar level of abstraction, in order for
the mapping model to be efficiently trainable. Accordingly,
preferably, the source and target layers have the at least
approximately the same dimensions, e.g., equal dimensions
or with at most a factor two difference in width and height.
For the source and target layers to have the same level of
abstraction, it is preferable that they have similar amounts of
preceding layers, e.g., the same amount differing by at most
two or at most four. For a desirable amount of abstraction,
it is preferable to choose layers relatively far into the
convolutional part of the neural network, e.g., choosing the
final convolutional layer of the source or target model, or at
most two or at most four layers preceding the final convo-
Iutional layer.

Instead of relying on a manual choice, it is also possible
to determine which source or target layers to use by model
selection. To this end, e.g., multiple mapping models may be
trained for respective layers of the trained model TM and/or
of the aspect recognition model ARM. Mapping model MM
may then be selected among the multiple trained mapping
models based at least in part on performance of the multiple
trained mapping models on a test dataset, e.g., the ability to
map the source layer to the target layer. Accordingly, the
desirability of having an accurate mapping model, which
may generally favour the use of source and target layers that
occur earlier in their respective models, may be balanced
with the desirability of having more abstract representations
of the input instance, which may favour using later layers.
For example, deepest source and target layers satistying a
minimum performance threshold of the mapping model may
be selected.

Generally, any model architecture suitable for transform-
ing the source representation SR to the target representation
TR may be used. Specifically, in preferred embodiments the
source and target layers are convolutional layers, in which
case the mapping model MM may be an image-to-image
translation model as known per se. For example, model MM
may be a segmentation model, e.g., convolutional architec-
tures such as the U-net model can be used, e.g., as in FIG.
3b. To use such model architectures as a mapping model, the
model may be trained by minimizing an error of reconstruct-
ing the target layer representation, e.g., using a sum-squared
error or the like. It is noted that, although many image-to-
image translation models are typically applied in practice to
input and output images that have low-dimensional feature
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vectors per pixel, e.g., one or three (colour for the input,
object class or colour for the output), such models may be
readily applied to source/target representations with more
filters, e.g., at least ten or at least twenty.

The training of trained model TM, mapping model MM,
and/or an aspect recognition model ARM is illustrated by the
solid, dotted, and dashed lines in FIG. 4a. Generally, the
models can be trained independently from each other, by the
same system or by different systems. The models can also be
trained on different or the same datasets. The trained model
TM and aspect recognition mode ARM need to be already
trained at the point where mapping model MM is trained.

Typically, training is performed using stochastic
approaches such as stochastic gradient descent, e.g., using
the Adam optimizer as disclosed in Kingma and Ba, “Adam:
A Method for Stochastic Optimization” (available at https://
arxiv.org/abs/1412.6980 and incorporated herein by refer-
ence). As is known, such optimization methods may be
heuristic and/or arrive at a local optimum. Generally, the
training of a model may comprise applying the model to be
trained on one or more inputs to obtain respective outputs;
deriving a training signal from an error derived from the
output; and adjusting parameters of the model according to
the training signal. Training may be performed instance-by-
instance or in batches, e.g., of at most or at least 64 or at
most or at least 256 instances.

Generally, the trained model TM may be trained on a
dataset comprising multiple training input instances II and
corresponding training model outputs MO, the model TM
being trained to reproduce respective training model outputs
MO given respective training instances II. The aspect rec-
ognition model ARM may be trained on a dataset compris-
ing multiple training input instances Il and corresponding
aspect presence indicators API, the model ARM being
trained to reproduce respective training model aspect pres-
ence indicator API given respective training instances II.

Given trained model TM and trained aspect recognition
model ARM for a given characteristic, the mapping model
MM may be trained on a training dataset comprising mul-
tiple training instances II. Interestingly, these training
instances do not need to be labelled, for example, input
instances for which no model output MO and/or aspect
indications API are available can still be used to train the
mapping model. The mapping model MM may be trained to
best reproduce target representation TR of input instances
according to the aspect recognition model given source
representation SR of the input instances according to the
trained model. First part TM-1 of the trained model may be
applied to the training instance TI to determine source
representation SR; first part ARM-1 of the aspect recogni-
tion model ARM may be applied to the training instance 11
to determine target representation TR, and the mapping
model MM may be trained to output the target representation
given the source representation.

Proceeding now to the determination of the aspect pres-
ence indicator API' for a given model output MO illustrated
in FIG. 4b. Given a trained mapping model MM, the aspect
presence indicator API' can be obtained by first using a
saliency method to determine a masked source representa-
tion MSR highlighting those elements of the representation
SR of the input instance 11 at the source layer relevant to the
model output; applying the mapping model MM to the
masked source representation to obtain target representation
TR for the input instance, representing at the target layer of
the aspect recognition model those features relevant for
recognizing the characteristic that were also relevant for
determining model output MO; and applying the aspect
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recognition model ARM, in other words its second part
ARM-2 mapping the target layer to the output layer, to the
target representation TR to obtain aspect presence indicator
APT".

To determine masked source representation MSR, various
existing saliency methods may be used. Such saliency
methods typically make use of the model output MO of
applying the trained model TM to input instance II; and of
the source representation SR, 320, of the input instance I at
the source layer of the trained model.

Generally, the term “saliency method” may refer to a
method to determine which elements of the source repre-
sentation are relevant to the model output, e.g., to make a
selection of a subset of source elements most relevant to the
model output. In other words, a saliency method may
determine a visual explanation of a decision of the trained
model, by visualizing important regions of the input instance
corresponding to a decision of interest by the model, e.g.,
regions whose values have a relatively big effect on, or
provide a relatively big contribution to, the decision of the
model to provide a particular model output. Various such
explainability methods may be class-discriminative, e.g.,
producing different explanations for different outputs, and/or
localized, e.g., providing explanations at a high level of
detail, e.g., at the level of single input pixels or single
features at a particular layer.

Many existing saliency methods are configured to deter-
mine a saliency map at the input layer of the trained model
TM. For example, techniques that can determine an input-
layer saliency map include: Guided Grad-CAM, as disclosed
in Selvaraju et al., “Grad-CAM: Visual Explanations from
Deep Networks via Gradient-based Localization™ (available
at https://arxiv.org/abs/1610.02391 and incorporated herein
by reference); CAM, as disclosed in Zhou et al., “Learning
Deep Features for Discriminative Localization” (available at
https://arxiv.org/abs/1512.04150 and incorporated herein by
reference); deconvolution, as disclosed in Zeiler et al.,
“Visualizing and understanding convolutional networks”
(available at https://arxiv.org/abs/1311.2901 and incorpo-
rated herein by reference); and guided backpropagation, as
disclosed in Springenberg et al., “Striving for Simplicity:
The All Convolutional Net” (available at https://arxiv.org/
abs/1412.6806 and incorporated herein by reference). Such
saliency methods can be used to determine a masked source
representation MSR at the input layer. Generally, such
methods can be also be used to determine a masked source
representation MSR at an internal layer by masking the input
instance at the input layer with the input-layer mask and
applying the trained model TM in part to obtain masked
source representation MSR. Masked source representation
MSR may also be obtained by applying a saliency method
not to the full trained model TM but only to its second part
TM-2, which may by itself be regarded as a model for
determining model outputs MO from source representations
SR.

For methods that directly determine a saliency map at the
source layer, masked source representation can be obtained
by masking source representation SR by the saliency map.
Masking may be done, for example, by keeping elements of
the source representation for which the saliency mask value
(e.g., scaled to [0,1] with 1 indicating highest importance)
exceeds a certain threshold, or by point multiplying with the
saliency mask (e.g., scaled to [0,1] with 1 indicating highest
importance).

Interestingly, in order to determine masked source repre-
sentations MSR that are defined at an internal layer, and/or
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for models TM that output a model output image, various
existing saliency methods can be adapted.

Specifically, Grad-CAM and CAM work by determining
weights capturing the importance of respective filters k at a
layer of a convolutional network, e.g., weights a,° as dis-
cussed in Section 3 of “Grad-CAM: Visual Explanations
from Deep Networks via Gradient-based Localization” and
weights w,° as discussed in Section 2 of “Learning Deep
Features for Discriminative Localization”. For saliency
methods using weights of respective filters, masked source
representation MSR may be determined from source repre-
sentation SR by multiplying each element of the source
representation by its weight.

In cases where the output of the trained model TM is an
image, say of size RxS, Grad-CAM and similar techniques
may be adapted by determining respective filter importance
weights a,° for respective output image pixels and combin-
ing them into a filter importance weight for the filter. For
example, the combination can be a sum, a weighted sum, etc.
For example, if the model output MO is a segmentation of
an input image, then object pixels can be weighted stronger
than background pixels. As a detailed example, for Grad-
CAM, the formula for computing a,° may be adapted to
become

I

i.e., a sum of derivatives of the model output probability y,
of a pixel being of class c, taken over all pixels in the output
image.

The deconvolution technique of Zeiler provides an inter-
pretation of feature activity at a given internal layer of a
trained model by taking the initial part of the model pre-
ceding that internal layer and constructing a deconvolutional
network, or deconvnet, for it. The deconvnet essentially
reverses the operations of (the initial part of) the model by
applying, in reverse order, layers that essentially undo the
original operations. For a particular neuron at a given layer,
the input pattern in an input instance causing the activation
of that neuron is determined by setting all other neuron
activations at that layer to zero, and using the deconvnet to
map the representation back to the input space. The tech-
niques of Zeiler may be adapted to determine a masked
source representation MSR at a given layer of the trained
model TM by taking the representation of the input instance
at a later layer of the trained model, e.g., the last convolu-
tional layer, and applying the deconvnet up to the layer at
which the masked source representation is desired. In case
the model output is an output volume such as an output
image, the later layer can be the output layer. The result may
be used to mask the representation of the input instance at
that given layer, or may be used directly as a masked source
representation. Similar, other deconvnets can also be applied
from a later layer to the relevant layer.

Similarly to Zeiler’s deconvolution technique, also Sprin-
genberg’s guided backpropagation works by making a back-
ward pass through a trained model. Accordingly, also in this
case, a masked source representation at a given layer can be
obtained by taking a representation at a later layer; using
guided backpropagation to obtain a mask at the desired
layer; and masking the representation of the input instance
at that layer by the mask.

FIGS. 5a-5b illustrate the use of the techniques described
herein in the case where the trained model and an aspect
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recognition model share a number of layers. FIG. 5a shows
a detailed, yet non-limiting, example of the training of the
trained model and aspect recognition model in this case.
FIG. 5b shows a detailed, yet non-limiting, example of the
determination of an aspect presence indicator in this case.
This example builds on the example of FIG. 4a-4b and many
implementation options described there, also apply here.

Shown in the figures is an input instance II, 510, and a
trained model TM, 540, configured to determine a model
output MO, 530, for the input instance II. Also shown is an
aspect recognition model ARM, 551, configured to deter-
mine an aspect presence indicator API, 570, indicating a
presence of a given characteristic in the input instance IL

Similarly to FIG. 4a-4b, also here trained model TM may
determine model output MO by applying a first part of the
trained model to the input instance to obtain a source
representation at a source layer of the trained model, and
applying a second part TM-2, 540-2, of the trained model to
the source representation. Also similarly to FIG. 4a-4b,
aspect recognition model ARM may determine aspect pres-
ence indicator API by applying a first part of the model ARM
to obtain a target representation at a target layer of the aspect
recognition model, and applying a second part of the model
ARM to obtain the aspect presence indicator APL In
embodiments illustrated in this figure, however, the first
parts of the trained model TM and aspect recognition model
ARM are shared among the models, as indicated by shared
model part SMP, 540-1, in the figure. Accordingly, the
shared model part SMP may result in a common source/
target representation S/TR, 520, used by both the trained
model TM and the aspect recognition model ARM to deter-
mine their respective outputs.

For example, both the trained model TM and the aspect
recognition model ARM may be convolutional models, e.g.,
trained model TM can be a convolutional model as described
with respect to FIG. 3a and/or aspect recognition model
ARM can be a fully convolutional model as described with
respect to FIG. 3b, etcetera. For example, all convolutional
part layers can be shared, or a number of convolutional part
layers can be shared, with the trained model TM and/or the
aspect recognition model ARM having additional convolu-
tional part layers apart from shared model part SMP. Many
variations will be apparent to the skilled person.

For training the trained model and aspect recognition
model, several options are available. One possibility is to
obtain a pre-trained shared model part SMP, e.g., a pre-
trained image feature extractor, e.g. Oxford University’s
VGG model. The trained model TM and the aspect recog-
nition model ARM can then be trained separately based on
the pre-trained shared model part SMP. It is also possible to
jointly train the trained model TM and aspect recognition
model ARM, including the shared model part.

For determining aspect presence indicator API' for model
output MO, similarly to FIG. 4b, trained model TM may be
applied to the input instance II to obtain the model output
MO. To this end, shared model part SMP may be applied to
obtain source/target representation S/TR at the source layer
of the trained model TM, and second part TM-2 of the
trained model TM may be applied to its result to obtain
model output MO.

As in FIG. 4b, a saliency method may be applied to obtain
a masked source representation MSR, 580, of the input
instance at the source layer of the trained model comprising
elements of the source representation S/TR relevant to the
model output MO. Interestingly, because the source and
target representations correspond because of the shared
model part SMP, this representation can be mapped to the
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target layer of the aspect recognition model ARM in the
form of an identity mapping. The result of this can be fed
into second part ARM-2 of the aspect recognition model to
obtain aspect presence indicator API' indicating a presence
of the given characteristic relevant to the model output MO
of the trained model TM.

Generally, FIGS. 4a-5b have focused on determining a
single aspect presence indicator using a single aspect rec-
ognition model. In a typical use, there will be multiple aspect
recognition models, e.g., at least five or at least ten. For each
of those, the techniques described with respect to FIGS.
4a-5b may be separately applied. It is also possible to use
aspect recognition models that can indicate presence of
multiple characteristics and/or that can indicate multiple
instances of characteristics of a given type in an input
instance. For example, such models can assign pixels to
respective characteristics or instances of a characteristic, or
by returning multiple bounding boxes along with respective
types of characteristic recognized. The techniques presented
in FIGS. 4a-5b apply readily to these cases.

In particular, different aspect recognition models may use
different model architectures and/or have different types of
model outputs. For example, one or more aspect recognition
models may be semantic segmentation models outputting a
per-pixel mask, whereas one or more other aspect recogni-
tion models output bounding boxes of recognized charac-
teristics. Also the target layers of the aspect recognition
models that are used can be different, and for different aspect
recognition models, different layers of the trained model
may be used, as appropriate. It is also possible to mix the
techniques of FIG. 4a-4b with those of FIG. 54-5b, e.g., for
one or more aspect recognition models, respective mapping
models can be used whereas for one or more other aspect
recognition models, a shared model part is used.

In various embodiments, the techniques described herein
may be used in systems and methods for assisting a clinician
in medical decision making. In such a case, the trained
model may be a medical image classification model for
detecting a clinical indication. Respective aspect recognition
models may be configured to indicate presence of respective
contributory factors to the clinical indication. In this case,
the contributory factors that were found to be relevant to the
model output of the trained model can provide useful
feedback, e.g., that help the clinician(s) focus on the infor-
mation that best helps them reach their own conclusion. For
example, in a tumour board meeting or similar setting where
multiple clinicians share their findings, there is typically a
limited amount of time to go through a lot of information,
such that pointing clinicians to relevant information is of
particular importance.

Although the model output of the trained model may also
be used by the clinician, interestingly, this is not needed; in
fact, the actual model output of the trained model is in some
cases not output at all, with the clues provided by the
presence indicators being considered enough to support the
clinician. For example, a segmentation map of clinically
relevant aspects may be presented to the clinician for
support.

As a concrete example, an input image may picture an
organ of a patient, e.g., the lungs, and the clinical indication
may be the presence of a malignant tumour. For example, the
model output may indicate the presence of a malignant
tumour, or may be a tumour grading. A potentially relevant
characteristic for the detection of a malignant tumour can be
the presence of nodules. Some nodules, however, are caused
by an infection and do not necessarily indicate a malignant
tumour. Accordingly, nodules that were used by the module

10

15

20

25

30

35

40

45

50

55

60

65

22

to decide on the presence of the malignant tumour (if any)
may be highlighted by an aspect recognition model, whereas
other nodules may not. Another potentially relevant charac-
teristic in this case may be an emphysema.

Generally, other types of relevant characteristics in medi-
cal image classification for which an aspect recognition
model may be trained include the shape and density of cell
nuclei, lymphocytes, presence of necrotic tissue and other
tissue type related features. A good way to inventory such
features is to listen as a clinical expert explains his/her
analysis on a number of actual cases. Segmentation models
that segment one or several such clinically relevant charac-
teristics are known in the part per se.

It is not necessary in the medical decision-making context
to use images, however. For example, an input instance may
represent an EEG signal to be used, for example, in sleep
staging. More generally, an input instance may represent a
time series of physiological measurements. When presenting
characteristics indicated to be present to the clinician how-
ever, also these types of input instances are typically visu-
alized.

In various embodiments, the techniques described herein
may be used in systems and methods for predictive main-
tenance of devices, e.g., medical devices. In predictive
maintenance, a goal can be to predict a possible failure of the
device. Models for predicting such a possible failure may
take as input a multitude of different sources of information
about the device, typically in the form of time-series data
representing the state of the device. Indicating characteris-
tics related to a prediction of a possible failure can help a
user or another processor system to decide how to deal with
the prediction, e.g., by indicating parts of the device that
should be replaced or at least more closely inspected.

However, the techniques presented herein are not appli-
cable just in the medical setting, e.g., also in autonomous
driving or augmented reality, complex decision-making
tasks are being performed by trained models and obtaining
an understanding of how these trained models reach their
decisions is highly relevant.

FIG. 6 shows a block-diagram of computer-implemented
method 600 of generating explainability information for
explaining a model output of a trained model. The method
600 may correspond to an operation of the system 200 of
FIG. 2. However, this is not a limitation, in that the method
600 may also be performed using another system, apparatus
or device.

The method 600 may comprise, in an operation titled
“ACCESSING TRAINED MODEL, ASPECT RECOGNI-
TION MODELS”, accessing 610 various data. The data
accessed in operation 610 may include a trained model
configured to determine a model output for an input
instance. The trained model may comprise at least a source
layer. The source layer may be an input layer or an internal
layer. The data accessed in operation 610 may further
include one or more aspect recognition models for respec-
tive characteristics of input instances of the trained model.
An aspect recognition model for a given characteristic may
be configured to indicate a presence of the characteristic in
an input instance. The aspect recognition model may com-
prise at least a target layer. The target layer may be an input
layer or an internal layer. The method 600 may further
comprise, in an operation titled “OBTAINING INPUT
INSTANCE”, obtaining 620 an input instance.

The method 600 may further comprise, in an operation
titled “APPLYING TRAINED MODEL”, applying 630 the
trained model to the input instance to obtain a model output.
The applying 630 may comprise obtaining a source repre-
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sentation of the input instance at the source layer of the
trained mode (not shown as a separate operation).

The method 600 may further comprise, in an operation
titled “APPLYING SALIENCY METHOD?”, applying 640 a
saliency method to obtain a masked source representation of
the input instance at the source layer of the trained model
comprising elements of the source representation relevant to
the model output.

The method may further comprise operations 652 and 654
being performed for one, multiple, or all aspect recognition
models for respective given characteristics.

In operation 652 titled “MAPPING MASKED SOURCE
REPRESENTATION TO TARGET LAYER”, the masked
source representation may be mapped to the target layer of
the aspect recognition model to obtain a target representa-
tion for the input instance at the target layer. In operation 654
titled “APPLYING ASPECT RECOGNITION MODEL TO
TARGET REPRESENTATION”, the aspect recognition
model for the given characteristic may be applied to the
target representation to obtain a model output indicating a
presence of the given characteristic relevant to the model
output of the trained model.

The method 600 may further comprise, in an operation
titled “OUTPUTTING ASPECT PRESENCE INDICA-
TORS”, outputting 660, as the explainability information,
the characteristics indicated to be present by the applied
aspect recognition models.

FIG. 7 shows a block-diagram of computer-implemented
method 700 of enabling generation of explainability infor-
mation for a trained model. The method 700 may correspond
to an operation of the system 100 of FIG. 1. However, this
is not a limitation, in that the method 700 may also be
performed using another system, apparatus or device.

The method 700 may comprise, in an operation titled
“ACCESSING TRAINED MODEL, ASPECT RECOGNI-
TION MODELS, TRAINING DATASET”, accessing 710
various data. The data accessed in operation 710 may
include a trained model configured to determine a model
output for an input instance. The trained model may com-
prise at least a source layer. The source layer may be an input
layer or an internal layer. The data accessed in operation 710
may further include one or more aspect recognition models
for respective characteristics of input instances of the trained
model. An aspect recognition model for a given character-
istic may be configured to indicate a presence of the char-
acteristic in an input instance. The aspect recognition model
may comprise at least a target layer. The target layer may be
an input layer or an internal layer. The data accessed in
operation 710 may further include a training dataset com-
prising multiple training instances.

The method 700 may further comprise training mapping
models between the trained model and the one or more
aspect recognition models. A mapping model between the
trained model and an aspect recognition model being trained
720 in an operation titled “TRAINING MAPPING
MODEL”, by for a training instance of the training dataset,
performing several operations. Specifically, the method 700
may comprise, in an operation titled “APPLYING
TRAINED MODEL TO DETERMINE SOURCE
REPESENTATION”, applying 722 the trained model at
least in part to the training instance to determine a source
representation of the training instance at the source layer of
the trained model. The method 700 may further comprise, in
an operation titled “APPLYING ASPECT RECOGNITION
MODEL TO DETERMINE TARGET REPRESENTA-
TION”, applying 724 the aspect recognition model at least
in part to the training instance to determine a target repre-
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sentation of the training instance at the target layer of the
aspect recognition model. The method may also comprise, in
an operation titled “TRAINING TO OUTPUT TARGET
GIVEN SOURCE”, training 726 the mapping model to
output the target representation given the source represen-
tation.

It will be appreciated that, in general, the operations of
method 600 of FIG. 6 and method 700 of FIG. 7 may be
performed in any suitable order, e.g., consecutively, simul-
taneously, or a combination thereof, subject to, where appli-
cable, a particular order being necessitated, e.g., by input/
output relations. Some or all of the methods may also be
combined, e.g., method 600 of explaining a model output
may be applied subsequently to said explaining being
enabled according to method 700.

The method(s) may be implemented on a computer as a
computer implemented method, as dedicated hardware, or as
a combination of both. As also illustrated in FIG. 8, instruc-
tions for the computer, e.g., executable code, may be stored
on a computer readable medium 800, e.g., in the form of a
series 810 of machine-readable physical marks and/or as a
series of elements having different electrical, e.g., magnetic,
or optical properties or values. The executable code may be
stored in a transitory or non-transitory manner. Examples of
computer readable mediums include memory devices, opti-
cal storage devices, integrated circuits, servers, online soft-
ware, etc. FIG. 8 shows an optical disc 800. Alternatively,
the computer readable medium 800 may comprise transitory
or non-transitory data 810 representing one or more respec-
tive mapping models between a trained model and one or
more respective aspect recognition models for use in a
computer-implemented method as described herein.

Examples, embodiments or optional features, whether
indicated as non-limiting or not, are not to be understood as
limiting the invention as claimed.

It should be noted that the above-mentioned embodiments
illustrate rather than limit the invention, and that those
skilled in the art will be able to design many alternative
embodiments without departing from the scope of the
appended claims. In the claims, any reference signs placed
between parentheses shall not be construed as limiting the
claim. Use of the verb “comprise” and its conjugations does
not exclude the presence of elements or stages other than
those stated in a claim. The article “a” or “an” preceding an
element does not exclude the presence of a plurality of such
elements. Expressions such as “at least one of” when pre-
ceding a list or group of elements represent a selection of all
or of any subset of elements from the list or group. For
example, the expression, “at least one of A, B, and C” should
be understood as including only A, only B, only C, both A
and B, both A and C, both B and C, or all of A, B, and C.
The invention may be implemented by means of hardware
comprising several distinct elements, and by means of a
suitably programmed computer. In the device claim enu-
merating several means, several of these means may be
embodied by one and the same item of hardware. The mere
fact that certain measures are recited in mutually different
dependent claims does not indicate that a combination of
these measures cannot be used to advantage.

The invention claimed is:

1. A computer-implemented method of generating
explainability information for explaining a model output of
a trained model being a neural-network type model, the
method comprising:

accessing:

atrained model configured to determine a model output
for an input instance, the trained model comprising
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at least a source layer, the source layer being an input
layer or an internal layer of the trained model;

one or more aspect recognition models for respective
characteristics of input instances of the trained
model, an aspect recognition model for a given
characteristic being configured to indicate a presence
of the characteristic in an input instance, the aspect
recognition model comprising at least a target layer,
the target layer being an input layer or an internal
layer of the aspect recognition model;

obtaining an input instance;

applying the trained model to the input instance to obtain

a model output, said applying comprising obtaining a
source representation of the input instance at the source
layer of the trained model;

applying a saliency method to obtain, at the source layer,

a masked source representation of the input instance of
the trained model, the masked source representation
comprising elements of the source representation rel-
evant to the model output;

for an aspect recognition model for a characteristic:

mapping the masked source representation to the target
layer of the aspect recognition model to obtain a
target representation for the input instance at the
target layer;

applying the aspect recognition model for the charac-
teristic to the target representation to obtain a model
output indicating a presence of the characteristic
relevant to the model output of the trained model;

outputting, as the explainability information, the charac-

teristics indicated to be present by the applied aspect

recognition models.

2. The method of claim 1, wherein an input instance
comprises at least one of an image and a time series of one
Or more sensor measurements.

3. The method of claim 1, wherein the trained model is
part of a larger model, wherein one or more outputs of
internal neurons of the larger model are being based on the
model output of the trained model.

4. The method of claim 1, wherein applying the saliency
method comprises:

determining a saliency map for the input instance at the

source layer, the saliency map indicating, for respective
elements of the source representation, a respective
relevance of said element to the model output of the
trained model for the input instance;

masking the source representation by the saliency map to

obtain the masked source representation.

5. The method of claim 1, wherein the aspect recognition
model for the characteristic is configured to indicate a part
of the input instance representing the characteristic.

6. The method of claim 1, wherein mapping the masked
source representation to the target layer of the aspect rec-
ognition model comprises applying a mapping model
between the source layer of the trained model and the target
layer of the aspect recognition model.

7. The method of claim 6, wherein the source layer of the
trained model and the target layer of the aspect recognition
model are convolutional layers, the mapping model com-
prising an image-to-image translation model, for example, a
U-net model.

8. The method of claim 1, wherein the source layer of the
trained model and layers preceding the source layer are
shared with the aspect recognition model.
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9. The method of claim 1, wherein outputting the char-
acteristics indicated to be present comprises highlighting
said characteristics in the input instance in a sensory per-
ceptible manner to a user.

10. The method of claim 1, wherein outputting the char-
acteristics indicated to be present comprises annotating the
input instance with said indicated characteristics.

11. The method of claim 1, wherein the trained model is
a medical image classification model for detecting a clinical
indication, the aspect recognition model being configured to
indicate presence of respective contributory factors to the
clinical indication.

12. A computer-implemented method of enabling genera-
tion of explainability information for a trained model being
a neural-network type model, comprising:

accessing:

atrained model configured to determine a model output
for an input instance, the trained model comprising
at least a source layer, the source layer being an input
layer or an internal layer of the trained model;

one or more aspect recognition models for respective
characteristics of input instances of the trained
model, an aspect recognition model being configured
to indicate a presence of the characteristic in an input
instance, the aspect recognition model comprising at
least a target layer, the target layer being an input
layer or an internal layer of the aspect recognition
model;

a training dataset comprising multiple training
instances;

training mapping models between the trained model and

the one or more aspect recognition models, a mapping

model between the trained model and an aspect recog-

nition model being trained by, for a training instance of

the training dataset:

applying the trained model at least in part to the training
instance to determine, at the source layer, a source
representation of the training instance of the trained
model;

applying the aspect recognition model at least in part to
the training instance to determine a target represen-
tation of the training instance at the target layer of the
aspect recognition model;

training the mapping model to output the target repre-
sentation given the source representation.

13. A system for generating explainability information for
explaining a model output of a trained model being a
neural-network type model, the system comprising:

a data interface for accessing:

atrained model configured to determine a model output
for an input instance, the trained model comprising
at least a source layer, the source layer being an input
layer or an internal layer of the trained model;

one or more aspect recognition models for respective
characteristics of input instances of the trained
model, an aspect recognition model for a given
characteristic being configured to indicate a presence
of the characteristic in an input instance, the aspect
recognition model comprising at least a target layer,
the target layer being an input layer or an internal
layer of the aspect recognition model;

a processor subsystem configured to:

obtain an input instance;

apply the trained model to the input instance to obtain
a model output, said applying comprising obtaining
a source representation of the input instance at the
source layer of the trained model;
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apply a saliency method to obtain a masked source
representation of the input instance at the source
layer of the trained model, the masked source rep-
resentation comprising elements of the source rep-
resentation relevant to the model output;

for an aspect recognition model for a characteristic:

map the masked source representation to the target
layer of the aspect recognition model to obtain a
target representation for the input instance at the
target layer;

apply the aspect recognition model for the character-
istic to the target representation to obtain a model
output indicating a presence of the characteristic
relevant to the model output of the trained model;

outputting, as the explainability information, the charac-

teristics indicated to be present by the applied aspect
recognition models.

14. A system for enabling generation of explainability
information for a trained model being a neural-network type
model, the system comprising:

a data interface for accessing:

a trained model configured to determine a model output
for an input instance, the trained model comprising
at least a source layer, the source layer being an input
layer or an internal layer of the trained model;

one or more aspect recognition models for respective
characteristics of input instances of the trained
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model, an aspect recognition model being configured

to indicate a presence of the characteristic in an input

instance, the aspect recognition model comprising at

least a target layer, the target layer being an input

layer or an internal layer of the aspect recognition

model;

a training dataset comprising multiple training
instances;
a processor subsystem configured to:
train mapping models between the trained model and

the one or more aspect recognition models, a map-

ping model between the trained model and an aspect

recognition model being trained by, for a training

instance of the training dataset:

applying the trained model at least in part to the
training instance to determine, at the source layer,
a source representation of the training instance of
the trained model;

applying the aspect recognition model at least in part
to the training instance to determine a target
representation of the training instance at the target
layer of the aspect recognition model;

training the mapping model to output the target
representation given the source representation.
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