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(57) ABSTRACT

Typically, high NREM stage N3 sleep detection accuracy is
achieved using a frontal electrode referenced to an electrode
at a distant location on the head (e.g., the mastoid, or the
earlobe). For comfort and design considerations it is more
convenient to have active and reference electrodes closely
positioned on the frontal region of the head. This configu-
ration, however, significantly attenuates the signal, which
degrades sleep stage detection (e.g., N3) performance. The
present disclosure describes a deep neural network (DNN)
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based solution developed to detect sleep using frontal elec-
trodes only. N3 detection is enhanced through post-process-
ing of the soft DNN outputs. Detection of slow-waves and
sleep micro-arousals is accomplished using frequency
domain thresholds. Volume modulation uses a high-fre-
quency/low-frequency spectral ratio extracted from the fron-
tal signal.
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ENHANCING DEEP SLEEP BASED ON
INFORMATION FROM FRONTAL BRAIN
ACTIVITY MONITORING SENSORS

CROSS-REFERENCE TO PRIOR
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/825,088, filed on 28 Mar. 2019. This
application is hereby incorporated by reference herein.

BACKGROUND
1. Field

The present disclosure pertains to a system and method
for enhancing non-rapid eye movement (NREM) sleep by
delivering sensory stimulation to a subject during a sleep
session.

2. Description of the Related Art

Systems for monitoring sleep and delivering sensory
stimulation to users during sleep are known. Electroen-
cephalogram (EEG) sensor based sleep monitoring and
sensory stimulation systems are known. These systems
typically control sensory stimulation based on information
from a sensor located behind the ear of a user, which can be
uncomfortable and/or have other disadvantages. There is a
need for a more comfortable system that is still able to
monitor sleep and control sensory stimulation to enhance
sleep for users.

SUMMARY

It would be advantageous to enhance NREM sleep by
delivering sensory stimulation to a subject during a sleep
session automatically with a closed loop system based on
information from sensors located on the forehead of the
subject.

Accordingly, one or more aspects of the present disclosure
relate to a system configured to enhance non-rapid eye
movement (NREM) sleep by delivering sensory stimulation
to a subject during a sleep session. The system comprises
first and second sensors, one or more sensory stimulators,
one or more hardware processors, and/or other components.
The first and second sensors are configured to generate
output signals conveying information related to brain activ-
ity of the subject during the sleep session. The first and
second sensors are configured to engage a forehead of the
subject. The one or more sensory stimulators are configured
to provide the sensory stimulation to the subject during the
sleep session. The one or more hardware processors are
coupled to the first and second sensors and the one or more
sensory stimulators. The one or more hardware processors
are configured by machine-readable instructions. The one or
more hardware processors are configured to: detect NREM
sleep in the subject during the sleep session based on the
output signals from the first and second sensors, and control
the one or more sensory stimulators to provide the sensory
stimulation to the subject during the NREM sleep to enhance
the NREM sleep in the subject during the sleep session.

In some embodiments, the first and second sensors are
configured to engage the forehead of the subject at a distance
of less than or equal to 10 centimeters from each other. In
some embodiments, the first sensor comprises a mid-frontal
(FPz) electrooculography (EOG) electrode, and the second
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sensor comprises a right ocular electrode (EOGR) or a left
ocular electrode (EOGL). In some embodiments, either the
first sensor or the second sensor is a reference electrode.

In some embodiments, the one or more hardware proces-
sors are further configured by machine-readable instructions
to obtain historical sleep depth information for a population
of users. The historical sleep depth information is related to
brain activity of the population of users that indicates sleep
depth over time during sleep sessions of the population of
users. The one or more hardware processors are configured
to cause a neural network to be trained based on the
historical sleep depth information by providing the historical
sleep depth information as input to the neural network. The
one or more hardware processors are configured to cause,
based on the output signals from the first and second sensors,
the trained neural network to predict future times during the
sleep session at which the subject will be in a deep sleep
stage. The trained neural network comprises an input layer,
an output layer, and one or more intermediate layers between
the input layer and the output layer. The one or more
hardware processors are configured to determine, with
respect to each of the future times, a predicted sleep stage
generated by the output layer of the trained neural network,
and sleep stage probability values generated by the one or
more intermediate layers of the trained neural network.
Responsive to (1) the predicted sleep stage being N3, or (2)
the predicted sleep stage being N2 with a ratio of a prob-
ability of N3 sleep to a probability of N2 sleep being at least
0.5, the one or more hardware processors are configured to
cause the one or more sensory stimulators to provide the
sensory stimulation to the user at the future times and to
modulate a timing and/or intensity of the sensory stimulation
during the sleep session based on the one or more probability
values generated by the one or more intermediate layers.

In some embodiments, the one or more hardware proces-
sors are further configured by machine-readable instructions
to detect sleep micro-arousals based on the information in
the output signals from the first and second sensors, and
control, based on the detected sleep micro-arousals, the one
or more sensory stimulators to provide the sensory stimu-
lation to the subject during N3 sleep to enhance the N3 sleep
in the subject during the sleep session. A sleep micro-arousal
is detected: responsive to a breach of a threshold on a power
in a power band of an electroencephalogram (EEG), or
based on an additional output from the trained neural
network.

In some embodiments, the one or more hardware proces-
sors are further configured by machine-readable instructions
to detect slow waves based on the information in the output
signals from the first and second sensors, and control, based
on the detected slow waves, the one or more sensory
stimulators to provide the sensory stimulation to the subject
during N3 sleep to enhance the N3 sleep in the subject
during the sleep session. A slow wave is detected: responsive
to a breach of a slow wave minimum peak threshold on a
negative going EEG signal, responsive to a breach of a slow
wave minimum peak threshold on a filtered negative going
EEG signal, wherein the filtering boosts a delta portion of
the negative going EEG signal, or based on a comparison of
a shape of the filtered negative going EEG signal to a shape
of a corresponding slow wave template.

In some embodiments, the one or more hardware proces-
sors are further configured by machine-readable instruc-
tions: such that the one or more intermediate layers of the
trained neural network are configured to generate additional
values from two or more corresponding convolutional lay-
ers; to determine a ratio of a value from one convolutional
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layer to a value from another convolutional layer, and to
cause the one or more sensory stimulators to modulate the
timing and/or intensity of the sensory stimulation based on
the ratio.

Another aspect of the present disclosure relates to a
method for enhancing non-rapid eye movement (NREM)
sleep by delivering sensory stimulation to a subject during a
sleep session with an enhancement system. The system
comprises first and second sensors, one or more sensory
stimulators, and one or more hardware processors coupled to
the first and second sensors and the one or more sensory
stimulators. The method comprises: generating, with the first
and second sensors, output signals conveying information
related to brain activity of the subject during the sleep
session, the first and second sensors configured to engage a
forehead of the subject. The method comprises detecting,
with the one or more hardware processors, NREM sleep in
the subject during the sleep session based on the output
signals from the first and second sensors. The method
comprises controlling, with the one or more processors, the
one or more sensory stimulators to provide the sensory
stimulation to the subject during the NREM sleep to enhance
the NREM sleep in the subject during the sleep session.

In some embodiments, the first sensor comprises a mid-
frontal (FPz) electrode, and the second sensor comprises a
right ocular electrode (EOGR) or a left ocular electrode
(EOGL). In some embodiments, either the first sensor or the
second sensor is a reference electrode.

In some embodiments, the method further comprises
obtaining, with the one or more hardware processors, his-
torical sleep depth information for a population of users, the
historical sleep depth information being related to brain
activity of the population of users that indicates sleep depth
over time during sleep sessions of the population of users.
The method further comprises causing, with the one or more
hardware processors, a neural network to be trained based on
the historical sleep depth information by providing the
historical sleep depth information as input to the neural
network. The method further comprises causing, with the
one or more hardware processors, based on the output
signals from the first and second sensors, the trained neural
network to predict future times during the sleep session at
which the subject will be in a deep sleep stage, the trained
neural network comprising an input layer, an output layer,
and one or more intermediate layers between the input layer
and the output layer. The method further comprises deter-
mining, with the one or more hardware processors, with
respect to each of the future times, a predicted sleep stage
generated by the output layer of the trained neural network,
and sleep stage probability values generated by the one or
more intermediate layers of the trained neural network. The
method further comprises, responsive to (1) the predicted
sleep stage being N3, or (2) the predicted sleep stage being
N2 with a ratio of a probability of N3 sleep to a probability
of N2 sleep being at least 0.5, causing, with the one or more
hardware processors, the one or more sensory stimulators to
provide the sensory stimulation to the user at the future times
and to modulate a timing and/or intensity of the sensory
stimulation during the sleep session based on the one or
more probability values generated by the one or more
intermediate layers.

In some embodiments, the method further comprises
detecting, with the one or more hardware processors, sleep
micro-arousals based on the information in the output sig-
nals from the first and second sensors, and controlling, with
the one or more hardware processors, based on the detected
sleep micro-arousals, the one or more sensory stimulators to
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provide the sensory stimulation to the subject during N3
sleep to enhance the N3 sleep in the subject during the sleep
session. A sleep micro-arousal is detected: responsive to a
breach of a threshold on a power in a power band of an
electroencephalogram (EEG), or based on an additional
output from the trained neural network.

In some embodiments, the method further comprises
detecting, with the one or more hardware processors, slow
waves based on the information in the output signals from
the first and second sensors, and controlling, with the one or
more hardware processors, based on the detected slow
waves, the one or more sensory stimulators to provide the
sensory stimulation to the subject during N3 sleep to
enhance the N3 sleep in the subject during the sleep session.
A slow wave is detected responsive to a breach of a slow
wave minimum peak threshold on a negative going electro-
encephalogram (EEG) signal, responsive to a breach of a
slow wave minimum peak threshold on a filtered negative
going EEG signal, wherein the filtering boosts a delta
portion of the negative going EEG signal, or based on a
comparison of a shape of the filtered negative going EEG
signal to a shape of a corresponding slow wave template.

In some embodiments, the one or more intermediate
layers of the trained neural network are configured to
generate additional values from two or more corresponding
convolutional layers. In some embodiments, the method
further comprises determining, with the one or more hard-
ware processors, a ratio of a value from one convolutional
layer to a value from another convolutional layer, and
causing, with the one or more hardware processors, the one
or more sensory stimulators to modulate the timing and/or
intensity of the sensory stimulation based on the ratio.

These and other objects, features, and characteristics of
the present disclosure, as well as the methods of operation
and functions of the related elements of structure and the
combination of parts and economies of manufacture, will
become more apparent upon consideration of the following
description and the appended claims with reference to the
accompanying drawings, all of which form a part of this
specification, wherein like reference numerals designate
corresponding parts in the various figures. It is to be
expressly understood, however, that the drawings are for the
purpose of illustration and description only and are not
intended as a definition of the limits of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of a system configured
to enhance non-rapid eye movement (NREM) sleep and/or
other sleep by delivering sensory stimulation to a subject
during a sleep session, in accordance with one or more
embodiments.

FIG. 2a illustrates an example of the attenuation of a
signal amplitude measured between two frontal electrodes
(referred to as FP2-EOGR or frontal derivation) compared to
the signal amplitude measured between a frontal electrode
and a mastoid reference (referred to as FPz-M2), in accor-
dance with one or more embodiments.

FIG. 25 illustrates an example of the attenuation of a
signal indicative of slow waves in the subject measured
between the two frontal electrodes (FP2-EOGR) compared
to the signal amplitude measured between a frontal electrode
and a mastoid reference (FPz-M2), in accordance with one
or more embodiments.

FIG. 3a illustrates an FPz electrode, an EOGR electrode,
and an EOGL electrode, all located on the forehead of the
subject, in accordance with one or more embodiments.
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FIG. 3b illustrates a headband that includes the FPz
electrode and the EOGR electrode, in accordance with one
or more embodiments.

FIG. 4 illustrates several of the operations performed by
the system, in accordance with one or more embodiments.

FIG. 5 illustrates micro-arousal detection, in accordance
with one or more embodiments.

FIG. 6 illustrates different EEG signals showing slow
waves, in accordance with one or more embodiments.

FIG. 7 illustrates a comparison of a candidate slow wave
waveform from a portion of an EEG to a template, in
accordance with one or more embodiments.

FIG. 8 illustrates a spectral response associated with
convolution outputs of a deep neural network, in accordance
with one or more embodiments.

FIG. 9 illustrates method for enhancing NREM sleep by
delivering sensory stimulation to a subject during a sleep
session with an enhancement system, in accordance with
one or more embodiments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

As used herein, the singular form of “a”, “an”, and “the”
include plural references unless the context clearly dictates
otherwise. As used herein, the term “or” means “and/or”
unless the context clearly dictates otherwise. As used herein,
the statement that two or more parts or components are
“coupled” shall mean that the parts are joined or operate
together either directly or indirectly, i.e., through one or
more intermediate parts or components, so long as a link
occurs. As used herein, “directly coupled” means that two
elements are directly in contact with each other. As used
herein, “fixedly coupled” or “fixed” means that two com-
ponents are coupled so as to move as one while maintaining
a constant orientation relative to each other.

As used herein, the word “unitary” means a component is
created as a single piece or unit. That is, a component that
includes pieces that are created separately and then coupled
together as a unit is not a “unitary” component or body. As
employed herein, the statement that two or more parts or
components “engage” one another shall mean that the parts
exert a force against one another either directly or through
one or more intermediate parts or components. As employed
herein, the term “number” shall mean one or an integer
greater than one (i.e., a plurality).

Directional phrases used herein, such as, for example and
without limitation, top, bottom, left, right, upper, lower,
front, back, and derivatives thereof, relate to the orientation
of the elements shown in the drawings and are not limiting
upon the claims unless expressly recited therein.

FIG. 1 is a schematic illustration of a system 10 config-
ured to deliver sensory stimulation to a subject 12 during a
sleep session. System 10 is configured to enhance deep
non-rapid eye movement (NREM) sleep and/or other sleep
by delivering sensory stimulation to subject 12 during a
sleep session. System 10 is configured to facilitate delivery
of sensory stimulation to subject 12 to enhance the restor-
ative effects of sleep in subject 12 and/or for other purposes.
System 10 is configured such that sensory stimulation
including auditory and/or other stimulation delivered during
sleep enhances slow waves in subject 12 without causing
arousals, which brings cognitive benefits and enhancement
of sleep restoration, for example. As described herein, in
some embodiments, system 10 is configured to determine
periods of deep sleep during a sleep session (e.g., based on
output from a neural network and/or other information). In
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6

some embodiments, based on such determinations, system
10 is configured to modulate sensory (e.g., auditory) stimu-
lation delivered to subject 12 to enhance sleep slow waves.
In some embodiments, periods of deep sleep may be deter-
mined in real-time and/or near real-time during a sleep
session of subject 12.

Prior closed-loop, electroencephalogram (EEG) based
systems that detect deep sleep in real-time and deliver
auditory stimulation use an active electrode (e.g., a frontal
FPz sensor) located on the forehead of a user and a reference
electrode (e.g., an M2 mastoid sensor) located behind the ear
of a user. Positioning one electrode on the forehead of the
user and one electrode behind the ear of the user increases
discomfort for the user during sleep. However, the elec-
trodes in prior systems are positioned in this way because if
the electrodes are located too close to each other (e.g., less
than about 10 cm apart) any differential signal the electrodes
generate has a relatively small amplitude. Until now, a small
differential signal was difficult or impossible to use to detect
and/or predict sleep stages in a user during a sleep session.

For example, as shown in FIGS. 2a and 24, the attenua-
tion of a signal amplitude measured between two frontal
electrodes (e.g., a mid-frontal (FPz) electrode and a right
ocular electrode (EOGR), referred to as FPz-EOGR or
frontal derivation) compared to the signal amplitude mea-
sured between a frontal electrode and a mastoid reference
(e.g., referred to as FPz-M2), is noticeable. FIG. 2a (top)
illustrates a probability 200 of an EEG amplitude 201 for an
FPz-M2 signal 202 and an FPz-EOGR signal 204, and
(bottom) a power spectrum density 206 for various frequen-
cies 208 for FPz-M2 signal 202 and an FPz-EOGR signal
204. As shown in FIG. 2a (top), the probability distribution
203 for FPz-M2 signal 202 is wider than the distribution 205
for FPz-EOGR signal 204. Also, (FIG. 2a bottom) the peak
power spectrum density 206 for FPz-M2 signal 202 is higher
than the peak power spectrum density for FPz-EOGR signal
204. The power spectrum density 206 illustrated in FIG. 2a
(bottom) shows that the difference in amplitude primarily
manifests in the delta frequency range (0.5 to 4 Hz), which
is important for the detection of sleep slow-waves (described
below). The attenuation of slow-waves is illustrated in FIG.
2b.

FIG. 25 illustrates an example of the attenuation of a
signal indicative of a slow wave 210 in the subject measured
between the two frontal electrodes (FP2-EOGR 204) com-
pared to the signal amplitude measured between a frontal
electrode and a mastoid reference (FPz-M2 202). FIG. 2b
illustrates signals 202 and 204 on a voltage 214 versus time
216 scale. As shown in FIG. 24, a negative going peak 212
of the FPz-M2 signal 202 (which is indicative of slow wave
210) is more pronounced compared to corresponding fea-
tures 214 of the FPz-EOGR signal 204.

System 10 (FIG. 1) addresses the limitations of prior art
systems by replacing the reference electrode traditionally
located behind the ear of a user with an electrode located on
the forehead of subject 12. For example, FIG. 3a illustrates
a mid-frontal (FPz) electrode 300 and a right ocular elec-
trode (EOGR) electrode 302 both located on the forehead of
subject 12. FIG. 3a also illustrates a left ocular electrode
(EOGL) 304 that may be included in system 10 (e.g., instead
of and/or in addition to EOGR electrode 302). FIG. 3b
illustrates a headband 310 that includes FPz electrode 300
and EOGR electrode 302. Headband 310 is configured such
that FPz electrode 300 and EOGR electrode 302 engage the
forehead of subject 12 (FIG. 3a) when headband 310 is worn
by subject 12.
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Returning to FIG. 1, forehead electrodes increase comfort
for subject 12 during sleep sessions and/or may provide
other advantages. System 10 is configured to account for the
amplitude difference (e.g., FP2-EOGR 204 versus FPz-M2
202 shown in FIGS. 2a and 2b) to detect any sleep stage
(e.g., including N3 sleep as described below). System 10
uses information in output signals from frontal sensors
(electrodes) configured to engage the forehead of subject 12
in two parallel processes. The first process buffers a tempo-
ral window of sensor information, which is processed by
system 10 to determine a probable sleep stage associated
with the temporal window. In the second process, system 10
determines spectral features from the frontal sensor output
signals (e.g. power in the alpha, beta, and delta frequency
bands).

System 10 is configured to generate intermediate outputs
and probability estimates for individual sleep stage deter-
minations. System 10 is configured to enhance the sleep
stage determination accuracy by biasing the sleep stage
decisions to meet application specific requirements (e.g.,
improvement of NREM N3 detection sensitivity at a cost of
degrading specificity). System 10 is configured such that if
a detected sleep stage (after the staging accuracy enhance-
ment) is N3, then the corresponding frontal signal window
is enhanced through a filter that compensates the spectral-
dependent amplitude decrease (e.g., shown in FIGS. 2a and
2b). System 10 is configured such that the enhanced signal,
in conjunction with intermediate and final outputs from
sleep stage determination operations, are used to detect sleep
slow-waves and the presence of sleep micro-arousals. The
sleep micro-arousals and/or other information are utilized to
determine properties of the sensory stimulation. In some
embodiments, system 10 includes one or more of sensors 13
and 14, a sensory stimulator 16, external resources 18, a
processor 20, electronic storage 22, a user interface 24,
and/or other components.

Sensors 13 and 14 are configured to generate output
signals conveying information related to brain activity and/
or other activity in subject 12. In some embodiments,
sensors 13 and 14 are similar to and/or the same as elec-
trodes 300 and/or 302 shown in FIG. 3a, for example. In
some embodiments, sensors 13 and 14 are configured to
generate output signals conveying information related to
brain activity such as slow wave activity in subject 12. In
some embodiments, the information related to brain activity
and/or other activity in subject 12 is the information related
to slow wave activity. In some embodiments, sensors 13 and
14 are configured to generate output signals conveying
information related to stimulation provided to subject 12
during sleep sessions. In some embodiments, the informa-
tion in the output signals from sensors 13 and 14 is used to
control sensory stimulator 16 to provide sensory stimulation
to subject 12 (as described below).

Sensors 13 and 14 may comprise one or more sensors that
generate output signals that convey information related to
brain activity in subject 12 directly. For example, sensors 13
and 14 may include electrooculogram (EOG) and/or elec-
troencephalogram (EEG) electrodes (e.g., as described
above) configured to detect ocular activity and/or electrical
activity along the forehead of subject 12 resulting from
current flows within the brain of subject 12. In some
embodiments, sensors 13 and 14 are configured to engage
the forehead of subject 12 at a distance of less than or equal
to 10 centimeters from each other. In some embodiments,
one of sensors 13 or 14 comprises a mid-frontal (FPz)
electrode, and the other one of sensors 13 or 14 comprises
a right ocular electrode (EOGR) or a left ocular electrode
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(EOGL). In some embodiments, either sensor 13 or sensor
14 is a reference electrode. Although sensors 13 and 14 are
illustrated in FIG. 1 at a single location near subject 12, this
is not intended to be limiting. Sensors 13 and 14 may include
sensors disposed in a plurality of locations, such as for
example, within (or in communication with) sensory stimu-
lator 16, coupled (in a removable manner) with clothing of
subject 12, worn by subject 12 (e.g., as a headband), and/or
in other locations.

In FIG. 1, sensors 13 and 14, sensory stimulator 16,
processor 20, electronic storage 22, and user interface 24 are
shown as separate entities. This is not intended to be
limiting. Some and/or all of the components of system 10
and/or other components may be grouped into one or more
singular devices. For example, these and/or other compo-
nents may be included in a headset and/or other garments
worn by subject 12. Such a headset may include, for
example, sensing electrodes, a reference electrode, one or
more devices associated with an EOG and/or an EEG, means
to deliver auditory stimulation (e.g., a wired and/or wireless
audio device and/or other devices), and one or more audio
speakers. In this example, the audio speakers may be located
in and/or near the ears of subject 12 and/or in other locations.
In this example, the sensing electrodes may be configured to
generate output signals conveying information related to
brain activity of subject 12, and/or other information. The
output signals may be transmitted to a processor (e.g.,
processor 20 shown in FIG. 1), a computing device (e.g., a
bedside laptop) which may or may not include the processor,
and/or other devices wirelessly and/or via wires. In this
example, acoustic stimulation may be delivered to subject
12 via the wireless audio device and/or speakers. In this
example, the (EOG and/or EEG) sensing electrodes, the
reference electrode, and the EEG devices may be repre-
sented, for example, by sensors 13 and 14 in FIG. 1. The
wireless audio device and the speakers may be represented,
for example, by sensory stimulator 16 shown in FIG. 1. In
this example, a computing device may include processor 20,
electronic storage 22, user interface 24, and/or other com-
ponents of system 10 shown in FIG. 1.

Stimulator 16 is configured to provide sensory stimulation
to subject 12.

Sensory stimulator 16 is configured to provide auditory,
visual, somatosensory, electric, magnetic, and/or sensory
stimulation to subject 12 prior to a sleep session, during a
sleep session, and/or at other times. In some embodiments,
a sleep session may comprise any period of time when
subject 12 is sleeping and/or attempting to sleep. Sleep
sessions may include nights of sleep, naps, and/or other
sleeps sessions. For example, sensory stimulator 16 may be
configured to provide stimuli to subject 12 during a sleep
session to facilitate a transition to a deeper stage of sleep, a
lighter stage of sleep, maintain sleep in a specific stage,
enhance the restorative effects of sleep, and/or for other
purposes. In some embodiments, sensory stimulator 16 may
be configured such that facilitating a transition between
deeper sleep stages and lighter sleep stages includes decreas-
ing sleep slow waves in subject 12, and {facilitating a
transition between lighter sleep stages and deeper sleep
stages includes increasing sleep slow waves.

Sensory stimulator 16 is configured to facilitate transi-
tions between sleep stages, maintain sleep in a specific stage,
and/or enhance the restorative effects of sleep through
non-invasive brain stimulation and/or other methods. Sen-
sory stimulator 16 may be configured to facilitate transitions
between sleep stages, maintain sleep in a specific stage,
and/or enhance the restorative effects of sleep through
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non-invasive brain stimulation using auditory, electric, mag-
netic, visual, somatosensory, and/or other sensory stimuli.
The auditory, electric, magnetic, visual, somatosensory, and/
or other sensory stimulation may include auditory stimula-
tion, visual stimulation, somatosensory stimulation, electri-
cal stimulation, magnetic stimulation, a combination of
different types of stimulation, and/or other stimulation. The
auditory, electric, magnetic, visual, somatosensory, and/or
other sensory stimuli include odors, sounds, visual stimula-
tion, touches, tastes, somatosensory stimulation, haptic,
electrical, magnetic, and/or other stimuli. The sensory
stimulation may have an intensity, a timing, and/or other
characteristics. For example, acoustic tones may be provided
to subject 12 to enhance the restorative effects of sleep in
subject 12. The acoustic tones may include one or more
series of tones of a determined length separated from each
other by an inter-tone interval. The volume (e.g., the inten-
sity) of individual tones may be modulated based on sleep
depth and other factors (as described herein) such that loud
tones are played during deeper sleep and soft tones are
played during lighter sleep. The length of individual tones
(e.g., the timing) and/or the inter tone interval (e.g., the
timing) may also be adjusted depending on whether subject
12 is in deeper or lighter sleep. This example is not intended
to be limiting. Examples of sensory stimulator 16 may
include one or more of a sound generator, a speaker, a music
player, a tone generator, a vibrator (such as a piezoelectric
member, for example) to deliver vibratory stimulation, a coil
generating a magnetic field to directly stimulate the brain’s
cortex, one or more light generators or lamps, a fragrance
dispenser, and/or other devices. In some embodiments,
sensory stimulator 16 is configured to adjust the intensity,
timing, and/or other parameters of the stimulation provided
to subject 12 (e.g., as described below).

External resources 18 include sources of information
(e.g., databases, websites, etc.), external entities participat-
ing with system 10 (e.g., one or more the external sleep
monitoring devices, a medical records system of a health
care provider, etc.), and/or other resources. For example,
external resources 18 may include sources of historical sleep
depth information for a population of users, and/or other
information. The historical sleep depth information for the
population of users may be related to brain activity of the
population of users that indicates sleep depth over time
during sleep sessions of the population of users. In some
embodiments, the historical sleep depth information for the
population of users may be related to a user population in a
given geographical area; demographic information related to
gender, ethnicity, age, a general health level, and/or other
demographic information; physiological information (e.g.,
weight, blood pressure, pulse, etc.) about the population of
users, and/or other information. In some embodiments, this
information may indicate whether an individual user in the
population of user is demographically, physiologically, and/
or otherwise similar to subject 12.

In some embodiments, external resources 18 include
components that facilitate communication of information,
one or more servers outside of system 10, a network (e.g.,
the internet), electronic storage, equipment related to Wi-Fi
technology, equipment related to Bluetooth® technology,
data entry devices, sensors, scanners, computing devices
associated with individual users, and/or other resources. In
some implementations, some or all of the functionality
attributed herein to external resources 18 may be provided
by resources included in system 10. External resources 18
may be configured to communicate with processor 20, user
interface 24, sensors 13 and 14, electronic storage 22,
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sensory stimulator 16, and/or other components of system
10 via wired and/or wireless connections, via a network
(e.g., a local area network and/or the internet), via cellular
technology, via Wi-Fi technology, and/or via other
resources.

Processor 20 is configured to provide information pro-
cessing capabilities in system 10. As such, processor 20 may
comprise one or more of a digital processor, an analog
processor, a digital circuit designed to process information,
an analog circuit designed to process information, a state
machine, and/or other mechanisms for electronically pro-
cessing information. Although processor 20 is shown in FIG.
1 as a single entity, this is for illustrative purposes only. In
some embodiments, processor 20 may comprise a plurality
of processing units. These processing units may be physi-
cally located within the same device (e.g., sensory stimula-
tor 16, user interface 24, etc.), or processor 20 may represent
processing functionality of a plurality of devices operating
in coordination. In some embodiments, processor 20 may be
and/or be included in a computing device such as a desktop
computer, a laptop computer, a smartphone, a tablet com-
puter, a server, and/or other computing devices. Such com-
puting devices may run one or more electronic applications
having graphical user interfaces configured to facilitate user
interaction with system 10.

As shown in FIG. 1, processor 20 is configured to execute
one or more computer program components. The computer
program components may comprise software programs and/
or algorithms coded and/or otherwise embedded in proces-
sor 20, for example. The one or more computer program
components may comprise one or more of an information
component 30, a model component 32, a control component
34, a modulation component 36, and/or other components.
Processor 20 may be configured to execute components 30,
32, 34, and/or 36 by software; hardware; firmware; some
combination of software, hardware, and/or firmware; and/or
other mechanisms for configuring processing capabilities on
processor 20.

It should be appreciated that although components 30, 32,
34, and 36 are illustrated in FIG. 1 as being co-located
within a single processing unit, in embodiments in which
processor 20 comprises multiple processing units, one or
more of components 30, 32, 34, and/or 36 may be located
remotely from the other components. The description of the
functionality provided by the different components 30, 32,
34, and/or 36 described below is for illustrative purposes,
and is not intended to be limiting, as any of components 30,
32, 34, and/or 36 may provide more or less functionality
than is described. For example, one or more of components
30, 32, 34, and/or 36 may be eliminated, and some or all of
its functionality may be provided by other components 30,
32, 34, and/or 36. As another example, processor 20 may be
configured to execute one or more additional components
that may perform some or all of the functionality attributed
below to one of components 30, 32, 34, and/or 36.

Information component 30 is configured to partition (or
window) the output signals from sensors 13 and 14 and
provide the information in the output signals to model
component 32 and/or a deep neural network in temporal
windows (e.g., as described below). In some embodiments,
the temporal windows are about six seconds long, for
example. This example is not intended to be limiting. Other
temporal windows of time are contemplated. Information
component 30 is also configured to determine one or more
brain activity parameters of subject 12. The brain activity
parameters may be determined by filtering and/or by per-
forming other operations on the information in the output
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signals from sensors 13 and 14 as described herein. The
brain activity parameters indicate depth of sleep in subject
12. In some embodiments, the information in the output
signals related to brain activity indicates sleep depth over
time. In some embodiments, the information indicating sleep
depth over time is or includes information related to power
in various bands of an EEG, slow wave activity in subject
12, and/or other information. In some embodiments, infor-
mation component 30 is configured to determine an EEG for
subject 12 based on the information in the output signals
from sensors 13 and 14, and/or other information.

In some embodiments, the slow wave activity of subject
12 may be indicative of sleep stages of subject 12. The sleep
stages of subject 12 may be associated with rapid eye
movement (REM) sleep, non-rapid eye movement (NREM)
sleep, and/or other sleep. The sleep stages of the population
of users may be one or more of NREM stage N1, stage N2,
or stage N3, REM sleep, and/or other sleep stages. In some
embodiments, the sleep stages of subject 12 may be one or
more of stage S1, S2, S3, or S4. In some embodiments,
NREM stage 2 and/or 3 (and/or S3 and/or S4) may be slow
wave (e.g., deep) sleep. In some embodiments, the infor-
mation related to brain activity that indicates sleep depth
over time is and/or is related to one or more additional brain
activity parameters.

In some embodiments, the information related to brain
activity that indicates sleep depth over time is and/or
includes EEG and/or other information generated during
sleep sessions of a population of users. In some embodi-
ments, brain activity parameters may be determined based
on the EEG information. In some embodiments, the brain
activity parameters may be determined by information com-
ponent 30 and/or other components of system 10. In some
embodiments, the brain activity parameters may be previ-
ously determined and be part of historical sleep depth
information obtained from external resources 18. In some
embodiments, the one or more brain activity parameters are
and/or are related to a frequency, amplitude, phase, presence
of specific sleep patterns such as spindles, K-complexes, or
sleep slow waves, alpha waves, power in various bands,
and/or other characteristics of an EEG signal. In some
embodiments, the one or more brain activity parameters are
determined based on the frequency, amplitude, and/or other
characteristics of the EEG signal. In some embodiments, the
determined brain activity parameters and/or the character-
istics of the EEG may be and/or indicate sleep stages that
correspond to the REM and/or NREM sleep stages described
above. For example, typical EEG characteristics during
NREM sleep include a transition from alpha waves (e.g.,
about 8-12 Hz) to theta waves (e.g., about 4-7 Hz) for sleep
stage N1; presence of sleep spindles (e.g., about 11 to 16 Hz)
and/or K-complexes (e.g., similar to sleep slow waves) for
sleep stage N2; presence of delta waves (e.g., about 0.5 to 4
Hz), also known as sleep slow waves, with peak-to-peak
amplitudes greater than about 75 uV for sleep stage N3;
presence of light sleep and/or arousals, and/or other char-
acteristics. In some embodiments, light sleep may be char-
acterized by the fact that the alpha activity (e.g., EEG power
in the 8-12 Hz band) is no longer present and slow waves are
not present. In some embodiments, slow wave activity is a
continuous value (e.g., EEG power in the 0.4 to 4 Hz band),
which is positive. In some embodiments, an absence of slow
waves is indicative of light sleep. In addition, spindle
activity (EEG power in the 11 to 16 Hz band) may be high.
Deep sleep may be characterized by the fact that delta
activity (e.g., EEG power in the 0.5 to 4 Hz band) is
dominant. In some embodiments, EEG power in the delta
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band and SWA are the same when considering sleep EEG.
In some embodiments, the information related to brain
activity that indicates sleep depth over time indicates
changes in an EEG delta power over time, a quantity of
micro arousals in the population of users, other EEG power
levels, and/or other parameters.

Information component 30 is configured to obtain the
historical sleep depth information. In some embodiments,
the historical sleep depth information is for the population of
users. In some embodiments, the historical sleep depth
information is for subject 12. The historical sleep depth
information is related to brain activity of the population of
users and/or subject 12 that indicates sleep depth over time
during previous sleep sessions of the population of users
and/or subject 12. The historical sleep depth information is
related to sleep stages and/or other brain activity parameters
of the population of users and/or subject 12 during corre-
sponding sleep sessions, and/or other information. In some
embodiments, information component 30 is configured to
obtain the historical sleep depth information electronically
from external resources 18, electronic storage 22, and/or
other sources of information. In some embodiments, obtain-
ing the historical sleep depth information electronically from
external resources 18, electronic storage 22, and/or other
sources of information comprises querying one more data-
bases and/or servers; uploading information and/or down-
loading information, facilitating user input (e.g., criteria
used to define a target patient population input via user
interface 24), sending and/or receiving emails, sending
and/or receiving text messages, and/or sending and/or
receiving other communications, and/or other obtaining
operations. In some embodiments, information component
30 is configured to aggregate information from various
sources (e.g., one or more of the external resources 18
described above, electronic storage 22, etc.), arrange the
information in one or more electronic databases (e.g., elec-
tronic storage 22, and/or other electronic databases), nor-
malize the information based on one or more features of the
historical sleep depth information (e.g., length of sleep
sessions, number of sleep sessions, etc.) and/or perform
other operations.

Model component 32 is configured to cause a machine-
learning model to be trained using the historical sleep depth
information. In some embodiments, the machine-learning
model is trained based on the historical sleep depth infor-
mation by providing the historical sleep depth information
as input to the machine-learning model. In some embodi-
ments, the machine-learning model may be and/or include
mathematical equations, algorithms, plots, charts, networks
(e.g., neural networks), and/or other tools and machine-
learning model components. For example, the machine-
learning model may be and/or include one or more neural
networks having an input layer, an output layer, and one or
more intermediate or hidden layers. In some embodiments,
the one or more neural networks may be and/or include deep
neural networks (e.g., neural networks that have one or more
intermediate or hidden layers between the input and output
layers).

As an example, neural networks may be based on a large
collection of neural units (or artificial neurons). Neural
networks may loosely mimic the manner in which a bio-
logical brain works (e.g., via large clusters of biological
neurons connected by axons). Each neural unit of a neural
network may be connected with many other neural units of
the neural network. Such connections can be enforcing or
inhibitory in their effect on the activation state of connected
neural units. In some embodiments, each individual neural
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unit may have a summation function that combines the
values of all its inputs together. In some embodiments, each
connection (or the neural unit itself) may have a threshold
function such that a signal must surpass the threshold before
it is allowed to propagate to other neural units. These neural
network systems may be self-learning and trained, rather
than explicitly programmed, and can perform significantly
better in certain areas of problem solving, as compared to
traditional computer programs. In some embodiments, neu-
ral networks may include multiple layers (e.g., where a
signal path traverses from front layers to back layers). In
some embodiments, back propagation techniques may be
utilized by the neural networks, where forward stimulation
is used to reset weights on the “front” neural units. In some
embodiments, stimulation and inhibition for neural networks
may be more free flowing, with connections interacting in a
more chaotic and complex fashion.

As described above, the trained neural network may
comprise one or more intermediate or hidden layers. The
intermediate layers of the trained neural network include one
or more convolutional layers, one or more recurrent layers,
and/or other layers of the trained neural network. Individual
intermediate layers receive information from another layer
as input and generate corresponding outputs. In some
embodiments, the trained neural network may comprise a
deep neural network comprising a stack of convolution
neural networks, followed by a stack of long short term
memory (LSTM) elements, for example. The convolutional
neural network layers may be thought of as filters, and the
LSTM layers may be thought of as memory elements that
keep track of sleep stage history, for example. The deep
neural network may be configured such that there are max
pooling layers which reduce dimensionality between the
convolutional neural network layers. In some embodiments,
the deep neural network comprises optional scalar param-
eters (like body-mass-index BMI, gender, age, etc.) before
the LSTM layers. In some embodiments, the deep neural
network comprises dense layers, on top of the convolutional
layers and recurrent layers. In some embodiments, the deep
neural network may comprise additional hyper-parameters,
such as dropouts or weight-regularization parameters, for
example.

The predicted sleep stages and/or future times of deep
sleep stages are generated based on the information in the
output signals from sensors 13 and 14 as processed by the
layers of the neural network. In some embodiments, outputs
of the deep neural network include (soft) probability values
for individual sleep stages for individual windows. Model
component 32 is configured such that these probability
values may be transformed via the ARGMAX operator (for
example) into a hard decision sleep stage value for each
window.

Model component 32 is configured such that the trained
(e.g., deep) neural network and/or any other supervised
machine learning algorithms are caused to detect, and/or
indicate predicted, sleep stages for subject 12. In some
embodiments, this may be and/or include (1) determining
periods when subject 12 is experiencing NREM stage N3 or
N2 sleep during the sleep session; predicting future times
during the sleep session at which subject 12 will be in a deep
(NREM) sleep stage, and/or other operations. The deter-
mined and/or predicted sleep stages and/or timing indicates
whether the user is in (or will be in) deep sleep for
stimulation and/or other information. By way of a non-
limiting example, a trained neural network may be caused to
indicate predicted sleep stages and/or future times and/or
timing of the deep sleep stages for subject 12 based on the
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output signals (e.g., using the information in the output
signals as input for the model) and/or other information. The
trained neural network is configured to indicate sleep stages
occurring, or predicted to occur at future times, for subject
12 during the sleep session. In some embodiments, as
described above, information component 30 in conjunction
with model component 32 is configured to provide the
information in the output signals to the neural network in
temporal sets (windows) that correspond to individual peri-
ods of time during the sleep session. Model component 32
is configured to cause the trained neural network to output
the determined and/or predicted sleep stages, and/or pre-
dicted times of deep sleep stages for subject 12, during the
sleep session based on the temporal sets of information.
Model component 32 is further described below with respect
to FIG. 4-FIG. 8.

Control component 34 is configured to control stimulator
16 to provide stimulation to subject 12 during sleep and/or
at other times. Control component 34 is configured to cause
sensory stimulator 16 to provide sensory stimulation to
subject 12 based on a detected and/or predicted sleep stage,
future times at which subject 12 will be in a deep sleep stage,
and/or other information over time during the sleep session.
Control component 34 is configured to cause sensory stimu-
lator 16 to provide sensory stimulation to subject 12 respon-
sive to subject 12 being in, or likely being in, deep NREM
sleep for stimulation (e.g., deep N3 sleep). Control compo-
nent 34 is configured to control one or more sensory
stimulators 16 to provide the sensory stimulation to subject
12 during deep NREM sleep to enhance the deep NREM
sleep in subject 12 during the sleep session.

For example, control component 34 is configured such
that controlling one or more sensory stimulators 16 to
provide the sensory stimulation to subject 12 during deep
NREM sleep to enhance the deep NREM sleep in subject 12
during the sleep session comprises: determining, with
respect to (1) the periods when subject 12 is experiencing
deep NREM N3 sleep, or (2) each of the future times, based
on one or more values generated by the one or more
intermediate layers of the trained neural network, whether
subject 12 is in, or will likely be in N3 sleep; causing one or
more sensory stimulators 16 to provide the sensory stimu-
lation to subject 12 (1) during the periods when subject 12
is experiencing deep (e.g., N3) NREM sleep, or (2) at the
future times, and determining, and/or causing one or more
sensory stimulators 16 to modulate (e.g., as described
herein), an amount, a timing, and/or intensity of the sensory
stimulation provided to subject 12 based on the one or more
values of the one or more intermediate layers and/or other
information. In some embodiments, stimulators 16 are con-
trolled by control component 34 to enhance deep NREM
sleep through (e.g. peripheral auditory, magnetic, electrical,
and/or other) stimulation delivered during deep NREM sleep
(as described herein). On detection of sleep stage transitions
(e.g., from deep NREM sleep to some other sleep stage),
control component 34 is configured to stop stimulation.
Control component 34 is further described below with
respect to FIG. 4-FIG. 8.

Modulation component 36 is configured to cause sensory
stimulator 16 to modulate a timing and/or intensity of the
sensory stimulation. Modulation component 36 is config-
ured to cause sensory stimulator 16 to modulate the timing
and/or intensity of the sensory stimulation based on the brain
activity parameters, values output from the (output and/or
intermediate) layers of the trained neural network, and/or
other information. As an example, sensory stimulator 16 is
caused to modulate the timing and/or intensity of the sensory
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stimulation based on the brain activity parameters, the
values output from the convolutional layers, the values
output from the recurrent layers, and/or other information. In
some embodiments, parameters determined (e.g., by infor-
mation component 30 shown in FIG. 1) based on the raw
EEG signal (e.g., also determined by information compo-
nent 30) can be used to modulate stimulation settings. As
described above, these parameters include sleep depth
parameters (e.g., a ratio between the EEG power in the delta
band and the EEG power in the beta band), the density of
detected slow-waves per unit of time, the power in the delta
band, and/or other parameters. Modulation component 36 is
further described below with respect to FIG. 4-FIG. 8.

By way of a non-limiting example, FIG. 4 illustrates
several of the operations performed by system 10 and
described above. In the example shown in FIG. 4, a frontal
signal 400 (from sensors 13 and 14 engaged with the
forehead of subject 12) is processed and/or otherwise pro-
vided (e.g., by information component 30 and model com-
ponent 32 shown in FIG. 1) to a deep neural network 404 in
temporal windows 402. Deep neural network 404 predicts
406 future sleep stages and/or future times where subject 12
will be in deep sleep based on the information in temporal
windows 402. The architecture of deep neural network 404
includes convolutional layers 410 (which can be thought of
as filters) and recurrent layers 412 (which, as just one
example, may be implemented as long-short term memory
elements) that endow network 404 with memory to be able
to use past predictions to refine prediction accuracy. A sleep
stage prediction accuracy enhancement operation 411 (per-
formed by control component 34 shown in FIG. 1 as part of
causing sensory stimulator 16 to provide sensory stimulation
to subject 12 based on a detected and/or predicted sleep
stage—further described below) follows sleep stage predic-
tion 406. Predicting future sleep stages and/or timing of deep
sleep stages, and enhancing the accuracy of these predic-
tions, facilitates provision of sensory stimulation to enhance
slow wave sleep because it enables system 10 to either
withhold stimulation (if lighter sleep stages are predicted) or
prepare for stimulation with optimized timing and intensity
when deeper (e.g., NREM) sleep is predicted.

As shown in FIG. 4, system 10 uses information in frontal
signal 400 in two parallel processes. As described above, a
first process 421 includes buffering a temporal window 402
of sensor information 402, which is processed by deep
neural network 404 to determine a probable sleep stage
associated with temporal window 402. A second process
423, includes determining 419 (e.g., by information com-
ponent 30 shown in FIG. 1) spectral features (e.g., param-
eters as described above) from frontal signal 400 (e.g. power
in the alpha, beta, and delta frequency bands).

Responsive to enhanced sleep stage predictions 408 indi-
cating NREM stage N3 sleep is predicted (e.g., deep sleep
for the provision of sensory stimulation) 414, windowed
frontal signal 400 is enhanced 450; slow waves, micro-
arousals, and/or other characteristics of the enhanced win-
dowed frontal signal are detected 452; and stimulation 416
is provided to subject 12 (e.g., from sensory stimulator 16
controlled by control component 34 shown in FIG. 1). The
slow waves and micro-arousals are detected in part based on
the determined spectral features 419 from second process
423, intermediate outputs 461 from deep neural network
404, sleep stages predicted 406 by deep neural network 404,
and/or other information. The intensity and/or timing of
stimulation 416 is modulated 418 (e.g., by modulation
component 36) based on parameters 419 (e.g., determined
by information component 30 shown in FIG. 1), detected
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slow waves and/or micro-arousals 452, enhanced predicted
N3 sleep 450, and/or other information. As described above,
in some embodiments, the sensory stimulation comprises
audible tones. In these embodiments, sensory stimulators 16
may modulate the timing and/or intensity of the sensory
stimulation by decreasing an inter tone interval and/or
increasing a tone volume.

Referring to FIG. 1 and FIG. 4, a useful property of neural
networks is that they can produce probabilities associated
with pre-defined sleep stages (e.g. Wake, REM, N1, N2, N3
sleep). Model component 32 is configured such that the set
of probabilities constitute a so-called soft decision vector,
which may be translated into a hard decision by determining
which sleep stage is associated with a highest probability
value (in a continuum of possible values) relative to other
sleep stages. These soft decisions make it possible for
system 10 to consider different possible sleep states on a
continuum rather than being forced to decide which discrete
sleep stage “bucket” particular EEG information fits into (as
in prior art systems). Model component 32 is configured
such that both the values output from convolutional layers,
and the soft decision value outputs, are vectors comprising
continuous values as opposed to discrete values such as
sleep stages. Consequently, convolutional and recurrent
(soft-decision) value outputs are available to be used by
system 10 to determine and/or predict sleep stages, modulate
the volume of the stimulation, and/or perform other opera-
tions, for example.

Model component 32 is configured to determine, with
respect to individual future times during a sleep session, a
predicted sleep stage generated by the output layer of the
trained neural network, and sleep stage probability values
generated by the one or more intermediate layers of the
trained neural network (e.g., 406 in FIG. 4). As described
above, system 10 is configured to enhance (e.g., 411 shown
in FIG. 4) N3 detection accuracy so that sensors 13 and 14
may both be placed on the forehead of subject 12 during a
sleep session. Improving N3 detection sensitivity is accom-
plished by considering the probability ratio between N2 and
N3 sleep for each individual future time.

For example, in system 10, control component 34 is
configured, responsive to (1) the predicted sleep stage being
N3 (e.g., output from the output layer of the trained neural
network), or (2) the predicted sleep stage being N2 with a
ratio of a probability of N3 sleep to a probability of N2 sleep
being at least 0.5 (this example is not intended to be
limiting), to cause sensory stimulator 16 to provide the
sensory stimulation to subject 12 at the future times (and/or
to modulate a timing and/or intensity of the sensory stimu-
lation during the sleep session based on the one or more
probability values generated by the one or more intermediate
layers as described herein). Control component 34 may be
thought of as performing a post-processing step (e.g., 411
from FIG. 4) on soft outputs (probabilities) of the trained
(deep) neural network. For a window where the N2 prob-
ability is the highest and N3 probability is the second
highest, when the ratio between the probability of N3 and
the probability of N2 is greater than 0.5 (for example),
control component 34 is configured to assign N3 sleep to
that window (instead of N2, even though N2 had the highest
probability and would have been the sleep stage predicted by
the trained neural network by itself).

In some embodiments, control component 34 is config-
ured to detect sleep micro-arousals (e.g., at operation 450 in
FIG. 4) based on the information in the output signals from
sensors 13 and 14 and/or other information, and control,
based on the detected sleep micro-arousals, one or more
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sensory stimulators 16 to provide the sensory stimulation to
subject 12 during N3 sleep to enhance the N3 sleep in
subject 12 during the sleep session (e.g., 416 in FIG. 4).
Controlling one or more sensory stimulators 16 based on
detected micro-arousals may include modulating an inten-
sity of the sensory stimulation provided to subject 12 and/or
other control (e.g., 418 in FIG. 4). Control component 34
may be configured such that, if a micro-arousal is detected
during stimulation, the delivery of sensory stimulation is
paused for a predefined period of time (e.g., 10 secs). In
some embodiments, a sleep micro-arousal is detected
responsive to a breach of a threshold on a power in a power
band of the EEG, based on an additional output from the
trained neural network, and/or based on other information.

By way of a non-limiting example, control component 34
may be configured such that (preprocessed) EEG signals
(e.g., output signals from sensors 15, 16) are band-pass
filtered in the a-band (in this particular example the filter
uses the 8-14.5 Hz band) and f-band (e.g., 19-24 Hz).
Control component 34 may use these signals to generate
a-band and p-band RMS (root mean square) values that are
estimated every 1.5 seconds (for example, and/or any other
amount of time that allows system 10 to function as
described herein). A candidate (or possible) micro-arousal is
flagged by control component 34 when any single o or §
RMS sample is above a respective threshold. If a candidate
micro-arousal persists for longer than an arousal refractory
period (e.g., two consecutive seconds and/or any other
length of time that allows system 10 to function as described
herein), then the event is flagged as a detected micro-
arousal.

An example of micro-arousal detection is shown in FIG.
5. FIG. 5 illustrates a-band 500 and fB-band 502 RMS
values, corresponding thresholds 504 (e.g., 7) and 506 (e.g.,
0.9), and an arousal refractory period 508 (T2-T1). As
described above, a candidate (or possible) micro-arousal is
flagged by control component 34 (FIG. 1) when any single
a or § RMS value 500, 502 is above a corresponding
threshold 504, 506. If a candidate micro-arousal persists for
longer than arousal refractory period 508, then the event is
flagged as a detected micro-arousal. In some embodiments,
control component 34 may be configured such that detected
micro-arousals in close time proximity to each other (e.g.,
within a three second interval between the end of a first
detected micro-arousal and the beginning of a second micro-
arousal) are merged.

Returning to FIGS. 1 and 4, in some embodiments,
control component 34 is configured such that the thresholds
for oo and § are determined using a parameter optimization
procedure configured to match micro-arousals manually
annotated by a trained sleep technician. Raw output signals
(e.g., from sensors 13, 14) are run through software designed
to simulate sleep stage determination (e.g., the trained neural
network described above). Several different combinations of
alpha €{5:12; step=1} and beta E {0.6:2, step=0.1} thresh-
olds can be tested by the simulator. The arousals detected in
the periods of N3 sleep (automatically detected as described
above) are compared against arousals manually annotated by
a sleep technician in the same period. As non-limiting
examples, sensitivity, specificity, positive predictive value
(PPV), and area under the receiver operating characteristic
(ROC) curve (area under the curve—AUC) may be deter-
mined to quantify micro-arousal detection performance and
facilitate selection of an optimal alpha-beta combination. In
some embodiments, an optimal alpha threshold may be 7
(0=7), and an optimal beta threshold may be 0.9 ($=0.9), but
these examples are not intended to be limiting.
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In some embodiments, control component 34 is config-
ured to use one or more deep neural networks to detect sleep
micro-arousals. A deep neural network used to detect sleep
micro-arousals may be similar to and/or the same as the deep
neural network described above. Similarly, the deep neural
network may include one or more convolution neural net-
works (CNN) and long short term memory (LSTM), with
optional dense layers, and/or other architecture. This archi-
tecture may require segmenting output signals into time
windows (e.g., windowing in three second windows—this
example is not intended to be limiting). For clarification, in
system 10, three types of windows are considered: a (e.g.,
six second) window to detect sleep stages; a (e.g., 1.5
second) window to detect micro-arousals based on the
power in the beta/alpha band; and a (e.g., 3-second long)
window to detect micro-arousals based on the deep-learning
based detector. In some embodiments, control component 34
is configured to address micro-arousal arousal detection as a
binary classification problem. The arousal detection problem
is highly imbalanced, meaning that arousal and non-arousal
samples are not always of equal size. In some embodiments,
an arousal-detection DNN uses as input, a (e.g., 3-second)
window comprising EEG samples (not band powers). For
each of these windows, the DNN produces a yes/no output
(i.e. binary decision) defining whether an arousal was
detected or not. The DNN is trained with sleep data that was
previously annotated by an expert sleep technician for the
presence of arousals. The imbalance issue (more non-arous-
als compared to arousals) is due to the fact that in a typical
sleep night from a healthy user, more 3-second windows
without arousal are found compared to 3-second windows
containing arousals.

In some embodiments, control component 34 is config-
ured to detect slow waves based on the information in the
output signals from sensors 13 and 14 (e.g., at operation 450
in FIG. 4), and control, based on the detected slow waves,
one or more sensory stimulators 16 to provide the sensory
stimulation to the subject during N3 sleep to enhance the N3
sleep in the subject during the sleep session (e.g., 416 shown
in FIG. 4). In some embodiments, a slow wave is detected
responsive to a breach of a slow wave minimum peak
threshold on a negative going EEG signal, responsive to a
breach of a slow wave minimum peak threshold on a filtered
negative going EEG signal (where the filtering boosts a delta
portion of the negative going EEG signal), and/or based on
a comparison of a shape of the filtered negative going EEG
signal to a shape of a corresponding slow wave template.

By way of a non-limiting example, FIG. 6 illustrates
different EEG 601 signals 600, 602, 604 over time 603
showing slow waves 608, in accordance with one or more
embodiments. In prior systems that generate the typical
FPz-M2 electrode signal 600, real-time detection of sleep
slow waves is accomplished by sampling four points 610,
612, 614, 616 from a negative going portion 618 of an EEG
signal (e.g., 602) with a minimum peak 620 breaching a
configurable threshold value 605. As shown in FIG. 6, the
sampled points of interest 610, 612, 614, and 616 are
collected at indices where the negative threshold 605 is first
breached, at the negative peak 620, at the point of returning
to the negative threshold (with positive slope) 605, and at the
point of a subsequent positive-going zero-crossing. The
sampled points are subsequently used to estimate the fre-
quency of a corresponding sinusoid that passes through the
points, as well as through the positive zero-crossing, yield-
ing three frequency estimations corresponding to the candi-
date sleep slow wave. The average frequency estimation is
then compared against bounding thresholds in order to
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qualify or disqualify the windowed signal as a slow-wave.
As an example, a typical prior system may use a minimum
threshold (e.g., 605) of 29 uV during slow wave detection.

In system 10 (FIG. 1), which includes sensors 13 and 14
(FIG. 1) configured to engage the forehead of subject 12
(e.g., a frontal derivation system), a power spectral density
analysis shows that the delta band (0.5 to 4 Hz) amplitudes
are more prominently reduced compared to adjacent fre-
quency bands. This is illustrated in FIG. 6 by FPz-EOGR
signal 602. Slow wave 608 appears much shallower in signal
602 relative to signal 600. Thus, in order to detect slow
waves, system 10 is configured to operate with different
thresholds, and/or configured to detect slow waves in dif-
ferent ways. For example, system 10 is configured to detect
slow-waves, even with the reduced amplitudes found in the
frontal derivation signal, using one or more of the following
possible approaches.

In some embodiments (e.g., a first example approach),
control component 34 (FIG. 1) is configured to reduce 607
the slow-wave minimum peak threshold 605 until slow wave
sensitivity is regained. The decrease in the threshold for the
slow-wave peak, increases sensitivity as more slow-wave
events can be detected. Control component 34 may be
configured to sample points of interest (e.g., similar to 610,
612, 614, and 616, but for signal 602) for a frontal signal
(e.g., signal 602, the output signals of sensors 13 and 14
shown in FIG. 1) at indices where a negative threshold (e.g.,
selected for signal 602) is first breached, at a negative going
peak in the signal, at the point of returning to the negative
threshold (with positive slope) in the signal, and at the point
of a subsequent positive-going zero-crossing in the signal.
The sampled points in the frontal signal (e.g., 602) are
subsequently used to estimate the frequency of a corre-
sponding sinusoid that passes through the points, as well as
through the positive zero-crossing, yielding three frequency
estimations corresponding to the candidate sleep slow wave.
The average frequency estimation is then compared against
bounding thresholds for the frontal signal in order to qualify
or disqualify the windowed signal as a slow-wave.

In some embodiments, (e.g., a second example approach),
control component 34 is configured to cause and/or retain
disparity between the amplitudes of delta and non-delta
frequency components typically found in N3 deep sleep.
Given that the frontal derivation signal (e.g., 602 shown in
FIG. 6) has an asymmetric reduction in amplitudes across
the frequency spectrum, control component 34 is configured
to boost the delta and nearby frequencies via a shelving filter
(e.g., operation 450 shown in FIG. 4). This boosted signal is
illustrated by signal 604 in FIG. 6. As shown in FIG. 6,
signal 604 is shallower (e.g., has a less negative minimum)
at slow waves 608 compared to signal 600, but deeper (e.g.,
a more negative minimum) compared to signal 602. Control
component 34 (FIG. 1) is configured to determine the
slow-wave minimum peak threshold for boosted signal 604
to facilitate detection of slow waves. This threshold, for
example, may be between corresponding thresholds for
signals 600 and 602. The slow-wave minimum peak thresh-
old for boosted signal 604 may be used as the thresholds
(e.g., 605) described in the paragraphs above to facilitate
detection of slow waves.

In some embodiments, (e.g., a third example approach)
control component 34 (FIG. 1) is configured such that the
delta-boosting described above is combined with a different
slow-wave detection algorithm. As shown in FIG. 6, an EEG
determined from frontal signal 602 often has a different
morphology than a reference signal (FPz-M2) 600. In some
embodiments, the frontal signal is substantially smaller
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compared to the signal with reference to the mastoid. The
frontal signal is not just simply scaled down but its spectral
properties are also different (e.g., it has a different morphol-
ogy—see FIG. 2). In some embodiments, control component
34 is configured such that windows of EEG containing
candidate slow waves are sampled and normalized for
comparison to a template slow wave. The template slow
wave may be determined based on information from previ-
ous sleep sessions of subject 12; determined based on
information from previous sleep sessions of other (e.g.,
demographically similar) users; determined based on entries
and/or selections (e.g., via user interface 24) made by a
caregiver, subject 12, and/or other users; and/or determined
in other ways (e.g., as described below). Control component
34 is configured such that the template comprises an iden-
tical number of sampled points (to the number of sampled
points sampled from the EEG windows), and is determined
by collecting (e.g., FPz-EOGR) signals at locations where a
reference (e.g., FPz-M2) signal includes a slow-wave, and
averaging the collected signals. Once a candidate slow wave
is detected (e.g., as described above, with further informa-
tion provided below), the mean and/or standard deviation of
the point-by-point error (as normalized and compared to the
template) are used to determine whether the candidate is
morphologically similar enough to the template to be con-
sidered a slow wave. In some embodiments, candidate slow
waves are pre-screened by control component 34 via thresh-
olds for their duration, and a minimum negative threshold
similar to the methods described above. Examples of tem-
plate selection, template normalization, identification of
potential slow waves, normalization of potential slow
waves, and comparison with a template are described below.

Template Selection: control component 34 (FIG. 1) is
configured such that a slow-wave template need only be
determined once (but multiple template determinations and
redeterminations are contemplated), and may be re-used
across subjects and sleep session datasets. The slow-wave
template used for automated detection may be determined
by selecting the template from real subject datasets, deter-
mining the template based on a mean of slow waves which
have been automatically detected using other methods,
manually constructed from desired waveform features, and/
or determined in other ways.

Template Normalization: control component 34 is con-
figured such that, after a template has been determined, the
template is decimated by selecting k evenly spaced points
from the template. The choice of k is determined based on
a trade-off between real-time processing needs, and template
resolution. The value of k may be about 16, for example. The
voltage range for the template slow wave is normalized from
a peak voltage [0s, vPeak] to a target voltage [0, e.g., —40
uV]. The value of k, the target voltage, and/or other param-
eters may be determined based on information from prior
sleep sessions of subject 12 and/or other users, entered
and/or selected by a caregiver, subject 12, and/or other users,
and/or determined in other ways.

Identification of Potential Slow-Waves: control compo-
nent 34 (FIG. 1) is configured such that a potential slow-
wave is determined to be any waveform segment that has the
following characteristics, and lies below 0 pV: a positive-
to-negative zero crossing, a subsequent negative peak below
-40 uV, and a subsequent return (in voltage) to a predeter-
mined percentage of the negative peak amplitude. For
example, the predetermined percentage may be 0%, indi-
cating that a potential slow wave would be identified when
the voltage of the waveform reaches the negative to positive
zero crossing (e.g., similar to point 616 in FIG. 6), 100%,
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indicating that a potential slow wave would be identified
when the voltage of the waveform is at the negative peak
(e.g., similar to point 612 in FIG. 6), 50%, indicating that a
potential slow wave would be identified when the voltage of
the waveform is half way between the negative peak and the
subsequent zero crossing (e.g., similar to point 614 in FIG.
6), and/or other percentages. The predetermined percentage
may be determined based on information from prior sleep
sessions of subject 12 and/or other users, entered and/or
selected by a caregiver, subject 12, and/or other users, and/or
determined in other ways.

Normalization of Potential Slow-Waves: control compo-
nent 34 (FIG. 1) is configured such that, once a potential
slow-wave is identified, the candidate waveform is normal-
ized in an identical manner to the template normalization
above. Control component 34 is configured such that the
waveform is decimated by selecting k evenly spaced points
from the template (where the choice ofk is determined based
on the trade-off between real-time processing needs and
template resolution, and the value of k may be about 16, for
example), and the range is normalized from [0, vPeak] to the
target range (e.g., [0, =40 uV]).

Comparison with the Template: control component 34
(FIG. 1) is configured to compare a potential slow wave to
the template using the mean and/or standard deviation of the
point-by-point error, and/or using other methods. For
example, in some embodiments, control component 34 is
configured to use the mean of point by point differences
between the potential slow wave and the template by deter-
mining the point by point voltage differences between a
candidate waveform and the template (V=Y .pwidare—
V rempiaze)s determining the mean of these differences in units
of microvolts, for example (u=mean (V,)), and validating
the candidate waveform based on whether the mean
breaches a threshold on the mean. The threshold on the mean
may be determined based on information from prior sleep
sessions of subject 12 and/or other users, entered and/or
selected by a caregiver, subject 12, and/or other users, and/or
determined in other ways.

As another example, in some embodiments, control com-
ponent 34 is configured to use the standard deviation of point
by point differences between the potential slow wave and the
template by determining the point by point voltage differ-
ences between a candidate waveform and the template
Vaig=V candiaare=Y empaze)> determining the mean and stan-
dard deviation of these differences in units of microvolts, for
example (p=mean (V,z), o=std (V,,)), and validating the
candidate waveform based on whether the standard devia-
tion, the standard deviation and the mean, or a product of
both breach corresponding thresholds. Theses thresholds
may be determined based on information from prior sleep
sessions of subject 12 and/or other users, entered and/or
selected by a caregiver, subject 12, and/or other users, and/or
determined in other ways.

FIG. 7 illustrates comparison 700 of a candidate slow
wave waveform 702 from a portion 704 of an EEG 706 (e.g.,
determined by information component 30 based on infor-
mation from sensors 13 and 14 shown in FIG. 1) to a
template 708. Control component 34 (FIG. 1) is configured
to use the mean or the standard deviation of point by point
voltage differences 710 between the potential slow wave 702
and the template 708 by determining the point by point
voltage differences 710 between candidate waveform 702,
and template 708, determining the mean and standard devia-
tion of these differences 710 in units of microvolts, for
example, and validating candidate waveform 702 based on

20

25

40

45

55

22

whether the mean, the standard deviation, the standard
deviation and the mean, or a product of both breach corre-
sponding thresholds.

Returning to FIG. 1, as described above, modulation
component 36 is configured to cause sensory stimulator 16
to modulate a timing and/or intensity of the sensory stimu-
lation (e.g., 418 in FIG. 4). Modulation component 36 is
configured to cause sensory stimulator 16 to modulate the
timing and/or intensity of the sensory stimulation based on
the one or more brain activity parameters, values output
from the convolutional and/or recurrent layers of the trained
neural network, and/or other information. As an example,
the volume of auditory stimulation provided to subject 12
may be adjusted and/or otherwise controlled (e.g., modu-
lated) based on value outputs from the deep neural network
such as convolutional layer value outputs and recurrent layer
value outputs (e.g., sleep stage (soft) prediction probabili-
ties).

In some embodiments, modulation component 36 is con-
figured such that dynamic stimulation intensity (e.g., vol-
ume) is provided based on a high-frequency/low-frequency
spectral ratio determined based on the frontal EEG signal
(e.g., the information in the output signals from sensors 13
and 14 and/or an EEG determined by information compo-
nent 30). The ratio between high and low frequencies in the
EEG reflects sleep depth (SD, see equation below), as lower
values correspond to shallow sleep and higher values to
deeper sleep.

Sleep Depth (SD) = log2| 212 | 4 joga| 2112
€] €] =10, 0,
b Beta Alpha

Modulation component 36 is configured such that, to
minimize the likelihood of disturbing sleep, the intensity
(e.g., volume) of the sensory stimulation is modulated
according to a linear function, mapping lower volumes to
lower sleep depth and higher volumes to higher sleep depth.
As a non-limiting example, for auditory stimulation, the
volume may be modulated between 35 and 60 dB, where the
softest volume is delivered by sensory stimulator 16 (con-
trolled by modulation component 36) when subject 12 is at
a minimum sleep depth, and the loudest volume is delivered
when subject 12 is at a maximum sleep depth. Modulation
component 36 may be configured such that no tones are
played if sleep depth breaches a minimum sleep depth
threshold, and such that the volume of auditory stimulation
does not exceed a predetermined maximum, no matter how
deep the sleep depth. Subject 12 specific volume levels may
also be used.

In some embodiments, modulation component 36 is con-
figured such that a sleep depth range for stimulation inten-
sity (e.g., volume) titration is determined based on a distri-
bution of sleep depth values within detected N3 sleep (e.g.,
determined as described above) for sleep depth information
for prior sleep sessions of subject 12 and/or other users. In
some embodiments, modulation component 36 is configured
such that the sleep depth minimum is defined as the sleep
depth corresponding to the 35th percentile of a distribution
of sleep depth values from the sleep depth information for
prior sleep sessions of subject 12 and/or other users. Simi-
larly, a sleep depth maximum may be defined as the sleep
depth corresponding to the 98th percentile. These percen-
tiles are not intended to be limiting. They may be any
percentile value that allows system 10 to function as
described herein.
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In some embodiments, modulation component 36 is con-
figured to cause sensory stimulator 16 to modulate the
intensity (e.g., volume) of the stimulation using neural
network intermediate outputs. The neural network interme-
diate outputs may include, for example, the soft-outputs
(e.g., probabilities for each sleep stage), the convolution
outputs, and/or other intermediate outputs. For example, the
soft-outputs are continuously varying values that character-
ize the certainty with which the network detects a given
sleep stage. The soft-outputs when N3 is detected can be
used to modulate the volume of the stimulation such that the
higher the probability of N3 sleep, the louder the volume of
the stimulation.

In some embodiments, modulation component 36 is con-
figured to utilize neural network convolutional layer outputs
to modulate stimulation delivered to subject 12. In some
embodiments, the neural network convolutional outputs may
be used instead of the probability values and/or other
parameters (e.g., determined directly from the EEG)
described above to modulate the stimulation. In some
embodiments, the neural network convolutional outputs may
be used in addition to the probability values and/or other
parameters (e.g., determined directly from the EEG)
described above to modulate the stimulation.

In some embodiments, modulation component 36 is con-
figured such that individual convolutional layer outputs are
used as a basis for modulating the timing and intensity of the
stimulation. In some embodiments, modulation component
36 is configured such that a plurality of convolutional layer
outputs facilitate modulating the timing and intensity (e.g.,
volume) of the stimulation. In some embodiments, the
output from the one or more convolutional layers comprises
two or more individual outputs from two or more corre-
sponding convolutional layers. In some embodiments,
modulation component 36 is configured to determine a ratio
of output from one convolutional layer to output from
another convolutional layer. In some embodiments, modu-
lation component 36 is configured to cause the one or more
sensory stimulators to modulate the timing and/or intensity
of the sensory stimulation based on the ratio.

By way of a non-limiting example, a spectral response
associated with the convolution outputs is shown in FIG. 8.
A first output convolutional layer output (CNN1) selectively
responds to spectral content in the delta frequency band and
a second convolutional layer output (CNN2) selectively
responds to spectral content in the beta (15-30 Hz) and
gamma (>30 Hz) band. Other convolutional layers outputs
may selectively respond to other spectral content. In this
example, taking the logarithm of the ratio between CNN1
and CNN2 (e.g., 800) shows a distinct period 802 in detected
N3 sleep 804 (as shown in hypnogram 806) where the
stimulation can be delivered at a higher intensity (e.g.,
volume).

In some embodiments, modulation component 36 (FIG.
1) is configured such that cues such as the presence of
micro-arousals and/or an exit from slow-wave sleep (e.g., a
transition from N3 to N2) can be used to automatically label
(as examples when an undesired effect was produced after
stimulation) and store sequences of the frontal input signals.
These sequences can subsequently be used to retrain/recali-
brate the stimulation logic (e.g., when an audible stimulation
is delivered and at what strength). Similarly, sequences
when the desired effect was produced after stimulation can
be labeled and stored so that the underlying algorithms
described above can be improved with useful frontal input
signals.
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Returning to FIG. 1, electronic storage 22 comprises
electronic storage media that electronically stores informa-
tion. The electronic storage media of electronic storage 22
may comprise one or both of system storage that is provided
integrally (i.e., substantially non-removable) with system 10
and/or removable storage that is removably connectable to
system 10 via, for example, a port (e.g., a USB port, a
firewire port, etc.) or a drive (e.g., a disk drive, etc.).
Electronic storage 22 may comprise one or more of optically
readable storage media (e.g., optical disks, etc.), magneti-
cally readable storage media (e.g., magnetic tape, magnetic
hard drive, floppy drive, etc.), electrical charge-based stor-
age media (e.g., EPROM, RAM, etc.), solid-state storage
media (e.g., flash drive, etc.), cloud storage, and/or other
electronically readable storage media. Electronic storage 22
may store software algorithms, information determined by
processor 20, information received via user interface 24
and/or external computing systems (e.g., external resources
18), and/or other information that enables system 10 to
function as described herein. Electronic storage 22 may be
(in whole or in part) a separate component within system 10,
or electronic storage 22 may be provided (in whole or in
part) integrally with one or more other components of
system 10 (e.g., processor 20).

User interface 24 is configured to provide an interface
between system 10 and subject 12, and/or other users
through which subject 12 and/or other users may provide
information to and receive information from system 10. This
enables data, cues, results, and/or instructions and any other
communicable items, collectively referred to as “informa-
tion,” to be communicated between a user (e.g., subject 12)
and one or more of sensors 13 and 14, sensory stimulator 16,
external resources 18, processor 20, and/or other compo-
nents of system 10. For example, a hypnogram, EEG data,
sleep stage probability, and/or other information may be
displayed for subject 12 or other users via user interface 24.
As another example, user interface 24 may be and/or be
included in a computing device such as a desktop computer,
a laptop computer, a smartphone, a tablet computer, and/or
other computing devices. Such computing devices may run
one or more electronic applications having graphical user
interfaces configured to provide information to and/or
receive information from users.

Examples of interface devices suitable for inclusion in
user interface 24 comprise a keypad, buttons, switches, a
keyboard, knobs, levers, a display screen, a touch screen,
speakers, a microphone, an indicator light, an audible alarm,
a printer, a tactile feedback device, and/or other interface
devices. In some embodiments, user interface 24 comprises
aplurality of separate interfaces. In some embodiments, user
interface 24 comprises at least one interface that is provided
integrally with processor 20 and/or other components of
system 10. In some embodiments, user interface 24 is
configured to communicate wirelessly with processor 20
and/or other components of system 10.

It is to be understood that other communication tech-
niques, either hard-wired or wireless, are also contemplated
by the present disclosure as user interface 24. For example,
the present disclosure contemplates that user interface 24
may be integrated with a removable storage interface pro-
vided by electronic storage 22. In this example, information
may be loaded into system 10 from removable storage (e.g.,
a smart card, a flash drive, a removable disk, etc.) that
enables the user(s) to customize the implementation of
system 10. Other exemplary input devices and techniques
adapted for use with system 10 as user interface 24 com-
prise, but are not limited to, an RS-232 port, RF link, an IR
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link, modem (telephone, cable or other). In short, any
technique for communicating information with system 10 is
contemplated by the present disclosure as user interface 24.

FIG. 9 illustrates method 900 for enhancing NREM sleep
by delivering sensory stimulation to a subject during a sleep
session with an enhancement system. The system comprises
one or more sensors, one or more sensory stimulators, one
or more hardware processors configured by machine-read-
able instructions, and/or other components. The one or more
hardware processors are configured to execute computer
program components. The computer program components
comprise an information component, a model component, a
control component, a modulation component, and/or other
components. The operations of method 900 presented below
are intended to be illustrative. In some embodiments,
method 900 may be accomplished with one or more addi-
tional operations not described, and/or without one or more
of the operations discussed. Additionally, the order in which
the operations of method 900 are illustrated in FIG. 9 and
described below is not intended to be limiting.

In some embodiments, method 900 may be implemented
in one or more processing devices such as one or more
processors 20 described herein (e.g., a digital processor, an
analog processor, a digital circuit designed to process infor-
mation, an analog circuit designed to process information, a
state machine, and/or other mechanisms for electronically
processing information). The one or more processing
devices may include one or more devices executing some or
all of the operations of method 900 in response to instruc-
tions stored electronically on an electronic storage medium.
The one or more processing devices may include one or
more devices configured through hardware, firmware, and/
or software to be specifically designed for execution of one
or more of the operations of method 900.

At an operation 902, output signals conveying informa-
tion related to brain activity of a subject are generated. The
output signals are generated during a sleep session of the
subject and/or at other times. The output signals are gener-
ated with first and second sensors configured to engage a
forehead of the subject. In some embodiments, the first
sensor comprises a mid-frontal (FPz) electrode, and the
second sensor comprises a right ocular electrode (EOGR) or
a left ocular electrode (EOGL). In some embodiments, either
the first sensor or the second sensor is a reference electrode.
In some embodiments, operation 902 is performed by sen-
sors the same as or similar to sensors 13 and 14 (shown in
FIG. 1 and described herein).

At an operation 904, NREM sleep is detected in the
subject. The NREM sleep is detected in the subject during
the sleep session based on the output signals from the first
and second sensors and/or based on other information.
Operation 904 includes obtaining historical sleep depth
information for a population of users. The historical sleep
depth information being related to brain activity of the
population of users that indicates sleep depth over time
during sleep sessions of the population of users. Operation
904 includes causing a neural network to be trained based on
the historical sleep depth information by providing the
historical sleep depth information as input to the neural
network. Operation 904 includes causing, based on the
output signals from the first and second sensors, the trained
neural network to predict future times during the sleep
session at which the subject will be in a deep sleep stage.
The trained neural network comprises an input layer, an
output layer, and one or more intermediate layers between
the input layer and the output layer. In some embodiments,
operation 904 is performed by processor components the
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same as or similar to model component 32 and/or control
component 34 (shown in FIG. 1 and described herein).

At an operation 906, a predicted sleep stage is determined.
In some embodiments, operation 906 may be a part of
operation 904, for example. Operation 906 includes deter-
mining, with respect to each of the future times, a predicted
sleep stage generated by the output layer of the trained
neural network, and sleep stage probability values generated
by the one or more intermediate layers of the trained neural
network. In some embodiments, operation 906 is performed
by a processor component the same as or similar to model
component 32 (shown in FIG. 1 and described herein).

At an operation 908, a determination of whether the
predicted sleep stage is, or is likely to be N3, is made. In
some embodiments, operation 908 may be a part of opera-
tion 904, for example. Operation 908 includes, (1) deter-
mining that the predicted sleep stage is N3, or (2) determin-
ing that the predicted sleep stage is N2, with a ratio of a
probability of N3 sleep to a probability of N2 sleep being at
least 0.5, and responsive to the predicted sleep stage being
N2, with the ratio of the probability of N3 sleep to the
probability of N2 sleep being at least 0.5, determining that
the N2 sleep is really likely N3 sleep. In some embodiments,
operation 908 is performed by processor components the
same as or similar to model component 32 and/or control
component 34 (shown in FIG. 1 and described herein).

At an operation 910, the sensory stimulator is controlled
to provide sensory stimulation to the subject. The sensory
stimulation is provided to the subject during the NREM
sleep to enhance the NREM sleep in the subject during the
sleep session. Operation 910 includes causing, with the one
or more hardware processors, the one or more sensory
stimulators to provide the sensory stimulation to the subject
at the future times and to modulate a timing and/or intensity
of the sensory stimulation during the sleep session based on
the one or more probability values generated by the one or
more intermediate layers.

Operation 910 includes detecting sleep micro-arousals
based on the information in the output signals from the first
and second sensors and/or other information, and control-
ling, based on the detected sleep micro-arousals, the one or
more sensory stimulators to provide the sensory stimulation
to the subject during N3 sleep to enhance the N3 sleep in the
subject during the sleep session. A sleep micro-arousal is
detected responsive to a breach of a threshold on a power in
a power band of an EEG, or based on an additional output
from the trained neural network.

Operation 910 includes detecting slow waves based on the
information in the output signals from the first and second
sensors and/or other information, and controlling, based on
the detected slow waves, the one or more sensory stimula-
tors to provide the sensory stimulation to the subject during
N3 sleep to enhance the N3 sleep in the subject during the
sleep session. A slow wave is detected responsive to a breach
of'a slow wave minimum peak threshold on a negative going
electroencephalogram (EEG) signal, responsive to a breach
of a slow wave minimum peak threshold on a filtered
negative going EEG signal, wherein the filtering boosts a
delta portion of the negative going EEG signal, or based on
a comparison of a shape of the filtered negative going EEG
signal to a shape of a corresponding slow wave template.

In some embodiments, the one or more intermediate
layers of the trained neural network are configured to
generate additional values from two or more corresponding
convolutional layers. In some embodiments, operation 910
includes determining a ratio of a value from one convolu-
tional layer to a value from another convolutional layer, and
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causing the one or more sensory stimulators to modulate the
timing and/or intensity of the sensory stimulation based on
the ratio. In some embodiments, operation 910 is performed
by processor components the same as or similar to model
component 32, control component 34, and/or modulation
component 36 (shown in FIG. 1 and described herein).

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. The word
“comprising” or “including” does not exclude the presence
of elements or steps other than those listed in a claim. In a
device claim enumerating several means, several of these
means may be embodied by one and the same item of
hardware. The word “a” or “an” preceding an element does
not exclude the presence of a plurality of such elements. In
any device claim enumerating several means, several of
these means may be embodied by one and the same item of
hardware. The mere fact that certain elements are recited in
mutually different dependent claims does not indicate that
these elements cannot be used in combination.

Although the description provided above provides detail
for the purpose of illustration based on what is currently
considered to be the most practical and preferred embodi-
ments, it is to be understood that such detail is solely for that
purpose and that the disclosure is not limited to the expressly
disclosed embodiments, but, on the contrary, is intended to
cover modifications and equivalent arrangements that are
within the spirit and scope of the appended claims. For
example, it is to be understood that the present disclosure
contemplates that, to the extent possible, one or more
features of any embodiment can be combined with one or
more features of any other embodiment.

What is claimed is:

1. A system configured to enhance non-rapid eye move-
ment (NREM) sleep by delivering sensory stimulation to a
subject during a sleep session, the system comprising:

first and second sensors configured to generate output

signals conveying information related to brain activity
of the subject during the sleep session, the first and
second sensors configured to engage a forehead of the
subject;

one or more sensory stimulators configured to provide the

sensory stimulation to the subject during the sleep
session; and

one or more hardware processors coupled to the first and

second sensors and the one or more sensory stimula-

tors, the one or more hardware processors configured

by machine-readable instructions to:

detect NREM sleep in the subject during the sleep
session based on the output signals from the first and
second sensors, and

control the one or more sensory stimulators to provide
the sensory stimulation to the subject during the
NREM sleep to enhance the NREM sleep in the
subject during the sleep session;

wherein the one or more hardware processors are further

configured by machine-readable instructions to:

obtain historical sleep depth information for a popula-
tion of users, the historical sleep depth information
being related to brain activity of the population of
users that indicates sleep depth over time during
sleep sessions of the population of users;

cause a neural network to be trained based on the
historical sleep depth information by providing the
historical sleep depth information as input to the
neural network;

cause, based on the output signals from the first and
second sensors, the trained neural network to predict
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future times during the sleep session at which the
subject will be in a deep sleep stage, the trained
neural network comprising an input layer, an output
layer, and one or more intermediate layers between
the input layer and the output layer;

determine, with respect to each of the future times: (i)
a predicted sleep stage, the predicted sleep stage
generated by the output layer of the trained neural
network, and (ii) sleep stage probability values, the
sleep stage probability values being generated by the
one or more intermediate layers of the trained neural
network; and

responsive to the predicted sleep stage being N3, or the
predicted sleep stage being N2 with a ratio of a
probability of N3 sleep to a probability of N2 sleep
being at least 0.5, cause the one or more sensory
stimulators to provide the sensory stimulation to the
subject at the future times and to modulate a timing
and/or intensity of the sensory stimulation during the
sleep session based on the sleep stage probability
values generated by the one or more intermediate
layers.

2. The system of claim 1, wherein the first and second
sensors are configured to engage the forehead of the subject
at a distance of less than or equal to 10 centimeters from
each other.

3. The system of claim 1, wherein the first sensor com-
prises a mid-frontal (FPz) electrode, and the second sensor
comprises a right ocular electrode (EOGR) or a left ocular
electrode (EOGL).

4. The system of claim 1, wherein either the first sensor
or the second sensor is a reference electrode.

5. The system of claim 1, wherein the one or more
hardware processors are further configured by machine-
readable instructions to detect sleep micro-arousals based on
the information in the output signals from the first and
second sensors, and control, based on the detected sleep
micro-arousals, the one or more sensory stimulators to
provide the sensory stimulation to the subject during N3
sleep to enhance the N3 sleep in the subject during the sleep
session, wherein a sleep micro-arousal is detected:

responsive to a breach of a threshold on a power in a

power band of an electroencephalogram (EEG), or
based on an additional output from the trained neural
network.
6. The system of claim 1, wherein the one or more
hardware processors are further configured by machine-
readable instructions to detect slow waves based on the
information in the output signals from the first and second
sensors, and control, based on the detected slow waves, the
one or more sensory stimulators to provide the sensory
stimulation to the subject during N3 sleep to enhance the N3
sleep in the subject during the sleep session, wherein a slow
wave is detected:
responsive to a breach of a slow wave minimum peak
threshold on a negative going electroencephalogram
(EEG) signal,

responsive to a breach of a slow wave minimum peak
threshold on a filtered negative going EEG signal,
wherein the filtering boosts a delta portion of the
negative going EEG signal, or

based on a comparison of a shape of the filtered negative

going EEG signal to a shape of a corresponding slow
wave template.

7. The system of claim 1, wherein the one or more
hardware processors are further configured by machine-
readable instructions:
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such that the one or more intermediate layers of the
trained neural network are configured to generate addi-
tional values from two or more corresponding convo-
Iutional layers;

to determine a convolutional layer ratio of a value from
one convolutional layer to a value from another con-
volutional layer, and

to cause the one or more sensory stimulators to modulate

the timing and/or intensity of the sensory stimulation
based on the convolutional layer ratio.

8. A method for enhancing non-rapid eye movement
(NREM) sleep by delivering sensory stimulation to a subject
during a sleep session with an enhancement system, the
system comprising first and second sensors, one or more
sensory stimulators, and one or more hardware processors
coupled to the first and second sensors and the one or more
sensory stimulators, the method comprising:

generating, with the first and second sensors, output

signals conveying information related to brain activity
of the subject during the sleep session, the first and
second sensors configured to engage a forehead of the
subject;

detecting, with the one or more hardware processors,

NREM sleep in the subject during the sleep session
based on the output signals from the first and second
sensors;
controlling, with the one or more processors, the one or
more sensory stimulators to provide the sensory stimu-
lation to the subject during the NREM sleep to enhance
the NREM sleep in the subject during the sleep session;

obtaining, with the one or more hardware processors,
historical sleep depth information for a population of
users, the historical sleep depth information being
related to brain activity of the population of users that
indicates sleep depth over time during sleep sessions of
the population of users;
causing, with the one or more hardware processors, a
neural network to be trained based on the historical
sleep depth information by providing the historical
sleep depth information as input to the neural network;

causing, with the one or more hardware processors, based
on the output signals from the first and second sensors,
the trained neural network to predict future times
during the sleep session at which the subject will be in
a deep sleep stage, the trained neural network compris-
ing an input layer, an output layer, and one or more
intermediate layers between the input layer and the
output layer;

determining, with the one or more hardware processors,

with respect to each of the future times: (i) a predicted
sleep stage, the predicted sleep stage being generated
by the output layer of the trained neural network, and
(ii) sleep stage probability values, the sleep stage
probability values being generated by the one or more
intermediate layers of the trained neural network; and
responsive to the predicted sleep stage being N3, or the
predicted sleep stage being N2 with a ratio of a prob-
ability of N3 sleep to a probability of N2 sleep being at
least 0.5, causing, with the one or more hardware
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processors, the one or more sensory stimulators to
provide the sensory stimulation to the subject at the
future times and to modulate a timing and/or intensity
of the sensory stimulation during the sleep session
based on the sleep stage probability values generated
by the one or more intermediate layers.

9. The method of claim 8, wherein the first sensor
comprises a mid-frontal (FPz) electrode, and the second
sensor comprises a right ocular electrode (EOGR) or a left
ocular electrode (EOGL).

10. The method of claim 8, wherein either the first sensor
or the second sensor is a reference electrode.

11. The method of claim 8, further comprising detecting,
with the one or more hardware processors, sleep micro-
arousals based on the information in the output signals from
the first and second sensors, and controlling, with the one or
more hardware processors, based on the detected sleep
micro-arousals, the one or more sensory stimulators to
provide the sensory stimulation to the subject during N3
sleep to enhance the N3 sleep in the subject during the sleep
session, wherein a sleep micro-arousal is detected:

responsive to a breach of a threshold on a power in a

power band of an electroencephalogram (EEG), or
based on an additional output from the trained neural
network.
12. The method of claim 8, further comprising detecting,
with the one or more hardware processors, slow waves based
on the information in the output signals from the first and
second sensors, and controlling, with the one or more
hardware processors, based on the detected slow waves, the
one or more sensory stimulators to provide the sensory
stimulation to the subject during N3 sleep to enhance the N3
sleep in the subject during the sleep session, wherein a slow
wave is detected:
responsive to a breach of a slow wave minimum peak
threshold on a negative going electroencephalogram
(EEG) signal,

responsive to a breach of a slow wave minimum peak
threshold on a filtered negative going EEG signal,
wherein the filtering boosts a delta portion of the
negative going EEG signal, or

based on a comparison of a shape of the filtered negative

going EEG signal to a shape of a corresponding slow
wave template.
13. The method of claim 8, wherein:
the one or more intermediate layers of the trained neural
network are configured to generate additional values
from two or more corresponding convolutional layers;

the method further comprises determining, with the one or
more hardware processors, a convolutional layer ratio
of a value from one convolutional layer to a value from
another convolutional layer, and

the method further comprises causing, with the one or

more hardware processors, the one or more sensory
stimulators to modulate the timing and/or intensity of
the sensory stimulation based on the convolutional
layer ratio.



