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TRAINING A NEURAL NETWORK MODEL

RELATED APPLICATIONS

This application is the U.S. National Phase application
under 35 US.C. § 371 of International Application No.
PCT/EP2018/083102, filed on Nov. 30, 2018, which claims
the benefit of European Application No. 17204976.9, filed
Dec. 1, 2017. These applications are incorporated by refer-
ence herein.

FIELD OF THE INVENTION

The invention relates to training a neural network model
and, in particularly, to training a neural network model using
regularization techniques.

BACKGROUND OF THE INVENTION

Artificial neural networks (referred to herein as “neural
networks”) are known for their use in modelling analysis
problems, such as image analysis problems. A deep learning
architecture, or deep neural network, is a particular type of
neural network which is capable of modelling more complex
analysis problems.

Neural network architectures include multiple units,
referred to as artificial neurons, or simply neurons, arranged
in layers, which are configured to simulate the neurons of a
brain. Each layer in a neural network model may perform a
different transformation on its input. Neurons in a neural
network are connected to one or more other neurons in the
network by one or more connections, or edges. Each neuron
or edge may have an associated weight (which may be
referred to as a bias), which is applied to the output from the
neuron, or to the connection from one neuron to a connected
neuron. The weights can be updated with training of the
neural network, for example using training data. A signal
(e.g. data), travels from a first, input layer of a neural
network to the last, output layer of the network, and may
traverse one or more intermediate, “hidden” layers. With
training, the weights are updated such that the output of the
neural network becomes closer to the expected output.

The complexity and large number of parameters involved
in neural network models (and particularly in deep learning
neural networks) increases the likelihood that “overfitting”
will occur. Overfitting occurs when a complex model over-
reacts to minor fluctuations in data used to train the model.
An output of a model in which overfitting has occurred may
be of little or no use, and may result in the need to retrain
the model.

Thus, there is a need for an improved way of training a
neural network model which reduces the likelihood of
overfitting occurring.

SUMMARY OF THE INVENTION

According to a first aspect, there is a system configured
for training a neural network model comprises a memory
comprising instruction data representing a set of instruc-
tions; and a processor configured to communicate with the
memory and to execute the set of instructions. The set of
instructions, when executed by the processor, cause the
processor to receive training data comprising a first set of
annotated images; receive test data comprising a second set
of annotated images; train the neural network model using
the training data, based on an initial regularization param-
eter; iteratively perform steps of: testing the trained neural
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network model using the test data to determine a loss
function of the trained neural network model for the test
data; adjust the initial regularization parameter based on the
loss function of the neural network model for the training
data and the loss function of the neural network model;
re-train the neural network model using the training data,
based on the adjusted regularization parameter, wherein the
iterative steps are performed until it is determined that the
loss function for the training data and the loss function for
the test data have both converged to a steady state.

By adjusting the regularization parameter based on the
loss function for the training data and the test data, an
assessment can be made as to whether the trained neural
network is suffering from overfitting, thereby enabling a
directed adjustment to the regularization parameter to be
made. This thereby enables a more accurate neural network
to be generated, and the loss function of the neural network
to be reduced more effectively.

The adjustment to the regularization parameter is itera-
tively repeated the loss function for both the test data and the
training data has converged (e.g. been minimized). Such
convergence indicates that further training is no longer
required, i.e. the neural network has been optimized based
on available data.

The training data and the test data are different and
separate to one another, but may be formed from different
parts of a larger annotated image dataset.

In some embodiments, the regularization parameter may
comprise at least one of a dropout parameter, relating to
neurons in the neural network model, or a dropconnect
parameter, relating to connections between neurons in the
neural network model.

The adjustment made to the regularization parameter may
be based on the change in the loss function between itera-
tions. In some embodiments, the regularization parameter
adjustment may be based on a convergence of the loss
function between iterations.

The adjustment made to the regularization parameter may
be based on or determined using the difference between the
loss function of the neural network model for the training
data and the loss function of the neural network model for
the test data. In other words, a comparison may be made
between the loss function of the neural network model for
the training data and the loss function of the neural network
model for the test data in order to determine how to modify
the regularization parameter. The present invention has
recognized that such a comparison enables an accurate
determination of whether the neural network is overfitting
and/or underfitting, and can thereby be used to direct the
modification to the regularization parameter.

By comparing the loss function for the test data to the loss
function for the training data, a method can be sure that a
poor loss function of the test data is due to overfitting rather
than an incorrectly trained neural network, thereby more
accurately establishing whether overfitting has occurred and
thereby how the regularization parameter ought to be
changed.

Causing the processor to adjust the regularization param-
eter may comprise causing the processor to increase the
regularization parameter when it is determined that the loss
function of the model is higher for the test data than for the
training data. Thus, embodiments may test for overfitting by
comparing the test data to the training data, and (in response
to the loss function for the test data being higher than the loss
function for the training data) modifying the neural network
to account for the overfitting by increasing the regularization
parameter.
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In some preferable embodiments, causing the processor to
adjust may comprise causing the processor to increase the
regularization parameter when it is determined that the loss
function of the model is higher for the test data than for the
training data and the loss function has minimized for the
training data. This effectively checks whether the neural
network has been fully trained using the training data, but is
overfitting for the training data. In this way, a more accurate
determination of whether overfitting is occurring can be
performed.

In some embodiments, causing the processor to adjust the
regularization parameter may comprise causing the proces-
sor to decrease the regularization parameter when it is
determined that the loss function of the neural network
model is higher for the training data than for the test data.

In some embodiments, causing the processor to adjust the
regularization parameter comprises causing the processor to
decrease the regularization parameter when it is determined
that the loss function of the neural network for the training
data is similar to the loss function for the test data (e.g.
within a predetermined range of one another, such as +1%
or +5%). In particular, it may be determined whether the loss
function for the test data lies within a predetermined range
(e.g. £1% or £5%) of the loss function for the training data,
and determining to decrease the regularization parameter in
response to a positive determination. Thus, an assessment
may be made as to whether the neural network has been
trained without overfitting, thereby enabling the processor to
decrease the regularization parameter to enable further train-
ing of the neural network. The regularization parameter may
also be decreased if the loss function for the test data is less
than the loss function for the training data (as this could
indicate that underfitting is occurring).

In further embodiments, the step of causing the processor
to increase the regularization parameter when it is deter-
mined that the loss function of the model is higher for the
test data than for the training data is modified so that the step
of increasing the regularization parameter only occurs when
the loss function of the model for the test data is higher than
the upper bound of the predetermined range for determining
similarity for the loss function of the training data (e.g. more
than 105% of the value of the loss function for the training
data or more than 101% of the value of the loss function for
the training data).

Training the neural network model may comprise itera-
tively training the neural network model using the training
data until a loss function of the neuron network model for
the training data converges to a steady state. Thus, in
embodiments, the regularization parameter may be modified
only when the neural network has been trained to conver-
gence. This improves an accuracy of the neural network.

Causing the processor to re-train the neural network
model may, in some embodiments, comprise causing the
processor to set weights of neurons in one or more layers of
the model based on weights of the neurons during the
preceding iteration.

The set of instructions, when executed by the processor
may further cause the processor to conclude training of the
neural network model when it is determined that the loss
function is minimized for the training data and the test data.

In some embodiments, the loss function of the model may
be considered to have converged to a steady state when the
loss function changes by less than a defined amount between
subsequent iterations.

The training data and the test data may, in some embodi-
ments, comprise images annotated with at least one of: an
indication of the presence of an object in the image; and an
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indication of the location of an object in the image. In some
embodiments, the training data and the test data may com-
prise medical images.

The regularization parameter may define a proportion of
neurons or connections between neurons to be temporarily
excluded from a particular layer of the neural network model
during training.

According to a second aspect, a method of training a
neural network model comprises receiving training data
comprising a first set of annotated images; training the
neural network model using the training data, based on an
initial regularization parameter; and iteratively performing
steps of’ testing the trained neural network model using the
test data to determine a loss function of the trained neural
network model for the test data; adjusting the initial regu-
larization parameter based on the loss function of the neural
network model for the training data and the loss function of
the neural network model; re-training the neural network
model using the training data, based on the adjusted regu-
larization parameter, wherein the iterative steps are per-
formed until it is determined that the loss function for the
training data and the loss function for the test data have both
converged to a steady state.

According to a third aspect, a computer program product
comprises a non-transitory computer readable medium, the
computer readable medium having computer readable code
embodied therein, the computer readable code being con-
figured such that, on execution by a suitable computer or
processor, the computer or processor is caused to perform
the methods disclosed herein.

These and other aspects of the invention will be apparent
from and elucidated with reference to the embodiments
described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention, and to show
more clearly how it may be carried into effect, reference will
now be made, by way of example only, to the accompanying
drawings, in which:

FIG. 1A is a simplified schematic of an example of a
neural network;

FIG. 1B is a simplified schematic of the neural network of
FIG. 1A with a dropout parameter applied;

FIG. 2A is a simplified schematic of an example of a
neural network;

FIG. 2B is a simplified schematic of the neural network of
FIG. 2A with a dropconnect parameter applied;

FIG. 3 is a simplified schematic of an example of a system
for training a neural network model;

FIG. 4 is an example of a medical image including a stent;

FIG. 5 is a flowchart of an example of a method of
training a neural network model; and

FIG. 6 is a simplified schematic of an example of a
computer-readable medium and a processor.

DETAILED DESCRIPTION OF EMBODIMENTS

Artificial neural networks or, simply, neural networks,
will be familiar to those skilled in the art, but in brief, a
neural network is a type of model that can be used to classify
data (for example, classify, or identify the contents of image
data). The structure of a neural network is inspired by the
human brain. Neural networks are comprised of layers, each
layer comprising a plurality of neurons. Each neuron com-
prises a mathematical operation. In the process of classitying
a portion of data, the mathematical operation of each neuron
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is performed on the portion of data to produce a numerical
output, and the outputs of each layer in the neural network
are fed into the next layer sequentially. Generally, the
mathematical operations associated with each neuron com-
prise one or more weights that are tuned during the training
process (e.g. the values of the weights are updated during the
training process to tune the model to produce more accurate
classifications).

For example, in a neural network model for classifying
the contents of images, each neuron in the neural network
may comprise a mathematical operation comprising a
weighted linear sum of the pixel (or in three dimensions,
voxel) values in the image followed by a non-linear trans-
formation. Examples of non-linear transformations used in
neural networks include sigmoid functions, the hyperbolic
tangent function and the rectified linear function. The neu-
rons in each layer of the neural network generally comprise
a different weighted combination of a single type of trans-
formation (e.g. the same type of transformation, sigmoid
etc., but with different weightings). As will be familiar to the
skilled person, in some layers, the same weights may be
applied by each neuron in the linear sum; this applies, for
example, in the case of a convolution layer. The weights
associated with each neuron may make certain features more
prominent (or conversely less prominent) in the classifica-
tion process than other features and thus adjusting the
weights of neurons in the training process trains the neural
network to place increased significance on specific features
when classifying an image. Generally, neural networks may
have weights associated with neurons and/or weights
between neurons (e.g. that modify data values passing
between neurons).

As briefly noted above, in some neural networks, such as
convolutional neural networks, lower layers such as input or
hidden layers in the neural network (i.e. layers towards the
beginning of the series of layers in the neural network) are
activated by (i.e. their output depends on) small features or
patterns in the portion of data being classified, while higher
layers (i.e. layers towards the end of the series of layers in
the neural network) are activated by increasingly larger
features in the portion of data being classified. As an
example, where the data comprises an image, lower layers in
the neural network are activated by small features (e.g. such
as edge patterns in the image), mid-level layers are activated
by features in the image, such as, for example, larger shapes
and forms, whilst the layers closest to the output (e.g. the
upper layers) are activated by entire objects in the image.

In general, the weights of neurons in the final layers of a
neural network model (known as the output layers) are most
strongly dependent on the particular classification problem
being solved by the neural network. For example, the
weights of outer layers may heavily depend on whether the
classification problem is a localization problem or a detec-
tion problem. The weights of lower layers (e.g. input and/or
hidden layers) tend to depend on the contents (e.g. features)
of the data being classified and therefore it has been recog-
nized herein that the weights in input and hidden layers of
neural networks processing the same type of data may, with
enough training, converge towards the same values over
time, even if the outer layers of the models are tuned to
address different classification problems.

As noted above, a problem which can affect neural
networks is overfitting. A technique which may be used to
reduce overfitting in neural network models is to apply a
regularization technique, such as “dropout” or “dropcon-
nect”. Dropout refers to a regularization technique in which
some neurons, or units, of a neural network model are
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ignored or excluded for part of the training of a model using
training data. Dropconnect refers to a regularization tech-
nique in which some connections between neurons in a
neural network model are ignored or excluded for part of the
training of a model using training data. Ignoring some of the
neurons or connections between neurons forces the neural
network to learn multiple independent representations of the
same data. Dropout and/or dropconnect help the neural
network to generalize better, and help to avoid the model
developing a reliance on a (possibly dominating) single
neuron or connection (i.e. edge) in the neural network.

In some examples, neurons or edges may be ignored by
temporarily setting the neuron’s or edge’s associated weight
to zero.

In some cases, regularization (e.g. dropout or dropcon-
nect) may involve neurons being ignored or excluded from
a single layer (or connections being ignored or excluded
between neurons in two adjacent layers) in the neural
network model while, in other cases, neurons from multiple
layers (or connections between multiple adjacent layers)
may be excluded. Not all of the neurons or connections in a
particular layer need be excluded during training of the
model (e.g. during each step of the training process, which
may comprise a random batch of the total set of training
data). The proportion of neurons or connections in a par-
ticular layer that are temporarily ignored (i.e. omitted or
“dropped” during a step of the training) may be defined by
a regularization parameter, which may range from 0 to 1,
where 0 represents a situation where none of the neurons or
connections are excluded, and 1 represents a case where all
of the neurons or connections in a layer are excluded. For
example, a regularization parameter of 0.5 represents a case
where half of the neurons or connections in a particular layer
are temporarily excluded. Thus, the regularization parameter
defines a proportion of neurons or connections between
neurons to be temporarily excluded from a particular layer
of the neural network model during training. In some cases,
a unique regularization parameter may be applied to each
individual neuron or connection. In some cases, a single
regularization parameter may be applied to a small group or
subset of neurons or connections. In some cases, a single
regularization parameter may be applied to all of the neurons
in a particular layer or to all of the connections between two
adjacent layers. In some cases, a single regularization
parameter may be applied to all of the neurons or connec-
tions in the neural network.

The neurons or connections that are excluded in a layer
may be chosen at random, or may be predefined. When a
dropout regularization technique is applied, the regulariza-
tion parameter may be referred to as a dropout parameter,
and when a dropconnect regularization technique is applied,
the regularization parameter may be referred to as a drop-
connect parameter.

Other regularization parameters would be recognized by
the skilled person, such as a learning rate, number of active
layers and so on. In some examples, a regularization param-
eter may define an optimizer of the neural network (i.e. the
optimizer used to modify the neural network during a
training process).

The performance quality of a neural network may be
defined by a loss function (also referred to as a cost
function). A loss function is a measure of how far away a
particular solution (e.g. a model having a particular combi-
nation of neuron weights) is from an optimal solution to a
problem being solved. A loss function (or loss function
value) for a neural network model can be said to be
minimized when the model returns the optimal solution. In
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some examples, a minimized loss function may have a value
of zero. As the neural network is trained using training data,
weights of the neurons and/or the edges connecting the
neurons are adjusted in an attempt to cause the loss function
to converge to an optimal value (i.e. to a value correspond-
ing to an optimal solution).

The inventors have discovered that the regularization
technique can be improved by basing adjustments of the
regularization parameter (i.c. the way in which the propor-
tion of neurons or connections that are ignored is varied
during training of a neural network model) on the loss
function. More specifically, it has been discovered that the
accuracy of a neural network model can be improved by
varying the regularization parameter based on the loss
function for training data and the loss function for test data
(which isn’t used to train the neural network, but rather to
test its validity).

Thus, there is proposed a concept for training a neural
network model. The concept comprises receiving training
data and test data, each comprising a set of annotated
images. A neural network model is trained using the training
data with an initial regularization parameter. Loss functions
of the neural network for both the training data and the test
data are used to modify the regularization parameter, and the
neural network model is retrained using the modified regu-
larization parameter. This process is iteratively repeated
until the loss functions both converge. A system, method and
a computer program product embodying this concept are
disclosed.

Examples of the use of dropout and dropconnect as
regularization techniques are shown in FIGS. 1 and 2
respectively.

FIG. 1 is a simplified schematic of two examples of neural
networks 100, 100". FIG. 1A shows a neural network 100
with no dropout (i.e. none of the neurons are ignored), and
FIG. 1B shows a neural network 100' with dropout param-
eters for the individual layers of between 0.4 and 0.6. In FIG.
1A, the neural network 100 includes a plurality of neurons
102, arranged in layers. Neurons 102 in an input layer 104
are connected by edges 106 to neurons 102 in a first
intermediate layer 108. The neurons 102 in the first inter-
mediate layer 108 are connected by edges 110 to neurons
102 in a second intermediate layer 112. The neurons 102 in
the second intermediate layer 110 are connected by edges
114 to a neuron in an output layer 116. The neural network
represented in FIG. 1A can be considered to have a dropout
parameter of zero, such that none of the neurons are ignored
or excluded.

In the neural network 100' of FIG. 1B, various neurons
118 are excluded or ignored. In the example shown, a
dropout parameter of 0.4 has been applied to the input layer
104, thereby causing two randomly selected neurons 118 to
be temporarily ignored during training (denoted by crosses
in the neurons). In the first intermediate layer 108, a dropout
parameter of 0.6 has been applied, thereby causing three
randomly selected neurons 118 to be temporarily ignored
during training. In the second intermediate layer 112, a
dropout parameter of 0.4 has been applied, thereby causing
two randomly selected neurons 118 to be temporarily
ignored during training. As a result of the dropout parameter
having been applied, fewer neurons 102 are active, resulting
in fewer activations (i.e. outputs from neurons) during
training.

While FIG. 1 demonstrates dropout (i.e. temporarily
dropping neurons from the neural network during training),
FIG. 2 demonstrates dropconnect, where neurons remain in
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use, but some of the interconnections between neurons in
adjacent layers are temporarily dropped and ignored during
training.

FIG. 2 is a simplified schematic of two examples of neural
networks 200, 200'. FIG. 2A shows a neural network 200
which is the same as the neural network 100, in which none
of the connections are ignored, and FIG. 2B shows a neural
network 200" in which some of the connections 110 between
the first intermediate layer 108 and the second intermediate
layer 112 are ignored. For clarity, the ignored connections
are not shown in FIG. 2B. In this example, none of the
connections 106 between the input layer 104 and the first
intermediate layer 108 are ignored. Thus, in the example of
FIG. 2B, the connections 106 between the input layer 104
and the first intermediate layer 108 can be considered to
have a dropconnect parameter of zero, while the connections
110 between the first intermediate layer 108 and the second
intermediate layer 112 can be considered to have a drop-
connect parameter of 0.64, such that sixteen randomly
selected connections are temporarily ignored during train-
ing. As a result of the dropconnect parameter having been
applied, fewer connections 110 are active, resulting in fewer
activations (i.e. outputs) of neurons in the second interme-
diate layer 112 during training.

As noted above, a regularization parameter may be
applied on a layer-by-layer basis, such that each layer (or
connections between a particular adjacent pair of layers)
may have a different regularization parameter, or on a
network-wide basis, such that a single regularization param-
eter is applied to the entire neural network, and neurons
and/or connections/edges to be temporarily ignored are
randomly selected from any layer(s) in the network.

Reference is now made to FIG. 3, which shows a block
diagram of a system 300 according to an embodiment that
can be used for training a neural network model. With
reference to FIG. 3, the system 300 comprises a processor
302 that controls the operation of the system 300 and that
can implement the methods described herein.

The system 300 further comprises a memory 306 com-
prising instruction data representing a set of instructions.
The memory 306 may be configured to store the instruction
data in the form of program code that can be executed by the
processor 302 to perform the methods described herein. In
some implementations, the instruction data can comprise a
plurality of software and/or hardware modules that are each
configured to perform, or are for performing, individual or
multiple steps of the method described herein. In some
embodiments, the memory 306 may be part of a device that
also comprises one or more other components of the system
300 (for example, the processor 302 and/or one or more
other components of the system 300). In alternative embodi-
ments, the memory 306 may be part of a separate device to
the other components of the system 300.

In some embodiments, the memory 306 may comprise a
plurality of sub-memories, each sub-memory being capable
of storing a piece of instruction data. In some embodiments
where the memory 306 comprises a plurality of sub-memo-
ries, instruction data representing the set of instructions may
be stored at a single sub-memory. In other embodiments
where the memory 306 comprises a plurality of sub-memo-
ries, instruction data representing the set of instructions may
be stored at multiple sub-memories. For example, at least
one sub-memory may store instruction data representing at
least one instruction of the set of instructions, while at least
one other sub-memory may store instruction data represent-
ing at least one other instruction of the set of instructions.
Thus, according to some embodiments, the instruction data
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representing different instructions may be stored at one or
more different locations in the system 300. In some embodi-
ments, the memory 306 may be used to store information,
data (e.g. images), signals and measurements acquired or
made by the processor 302 of the system 300 or from any
other components of the system 300.

The processor 302 of the system 300 can be configured to
communicate with the memory 306 to execute the set of
instructions. The set of instructions, when executed by the
processor 302 may cause the processor 302 to perform the
method described herein. The processor 302 can comprise
one or more processors, processing units, multi-core pro-
cessors and/or modules that are configured or programmed
to control the system 300 in the manner described herein. In
some implementations, for example, the processor 302 may
comprise a plurality of (for example, interoperated) proces-
sors, processing units, multi-core processors and/or modules
configured for distributed processing. It will be appreciated
by a person skilled in the art that such processors, processing
units, multi-core processors and/or modules may be located
in different locations and may perform different steps and/or
different parts of a single step of the method described
herein.

Returning again to FIG. 3, in some embodiments, the
system 300 may comprise at least one user interface 304. In
some embodiments, the user interface 304 may be part of a
device that also comprises one or more other components of
the system 300 (for example, the processor 302, the memory
306 and/or one or more other components of the system
300). In alternative embodiments, the user interface 304 may
be part of a separate device to the other components of the
system 300.

A user interface 304 may be for use in providing a user of
the system 300 (for example, a researcher such as a medical
researcher, a medical professional, or any other user of a
neural network model) with information resulting from the
method according to embodiments herein. The set of instruc-
tions, when executed by the processor 302 may cause
processor 302 to control one or more user interfaces 304 to
provide information resulting from the method according to
embodiments herein. Alternatively or in addition, a user
interface 304 may be configured to receive a user input. In
other words, a user interface 304 may allow a user of the
system 300 to manually enter instructions, data, or informa-
tion. The set of instructions, when executed by the processor
302 may cause processor 302 to acquire the user input from
one or more user interfaces 304.

A user interface 304 may be any user interface that
enables rendering (or output or display) of information, data
or signals to a user of the system 300. Alternatively or in
addition, a user interface 304 may be any user interface that
enables a user of the system 300 to provide a user input,
interact with and/or control the system 300. For example, the
user interface 304 may comprise one or more switches, one
or more buttons, a keypad, a keyboard, a mouse, a mouse
wheel, a touch screen or an application (for example, on a
tablet or smartphone), a display screen, a graphical user
interface (GUI) or other visual rendering component, one or
more speakers, one or more microphones or any other audio
component, one or more lights, a component for providing
tactile feedback (e.g. a vibration function), or any other user
interface, or combination of user interfaces.

In some embodiments, as illustrated in FIG. 3, the system
300 may also comprise a communications interface (or
circuitry) 308 for enabling the system 300 to communicate
with interfaces, memories and/or devices that are part of the
system 300. The communications interface 308 may com-
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municate with any interfaces, memories and devices wire-
lessly or via a wired connection.

It will be appreciated that FIG. 3 only shows the compo-
nents required to illustrate this aspect of the disclosure and,
in a practical implementation, the system 300 may comprise
additional components to those shown. For example, the
system 300 may comprise a battery or other power supply
for powering the system 300 or means for connecting the
system 300 to a mains power supply.

The system 300 is for training a neural network model,
and makes use of a regularization parameter to reduce the
likelihood, and/or the effect of, overfitting by the model.
Briefly, the system 300 is configured for training a neural
network model, and comprises the memory 306 comprising
instruction data representing a set of instructions; and the
processor 302 configured to communicate with the memory
306 and to execute the set of instructions. The set of
instructions, when executed by the processor 302, cause the
processor 302 to receive training data comprising a first set
of annotated images, receive test data comprising a second
set of annotated images, train the neural network model
using the training data, based on an initial regularization
parameter, and iteratively perform a modifying process. The
modifying process comprises testing the trained neural net-
work model using the test data to determine a loss function
of the trained neural network model for the test data;
adjusting the initial regularization parameter based on the
loss function of the neural network model for the training
data and the loss function of the neural network model; and
re-training the neural network model using the training data,
based on the adjusted regularization parameter. The modi-
fying process is performed until it is determined that the loss
function for the training data and the loss function for the
test data have both converged to a steady state.

Such a system is based on the realization that adjusting the
regularization parameter based on a comparison between a
loss function of training data and test data enables a deter-
mination of whether overfitting has occurred to be per-
formed. Thus, modifications to the regularization parameter
can be made dependent on a determination of whether a
neural network is over/underfitting.

Generally, the neural network model may comprise a feed
forward model (such as a convolutional neural network, an
auto-encoder neural network model, a probabilistic neural
network model and a time delay neural network model), a
radial basis function network model, a recurrent neural
network model (such as a fully recurrent model, a Hopfield
model, or a Boltzmann machine model), or any other type of
neural network model comprising weights.

The model may be used to classify data. The data may be
any type of data, such as data comprising images (e.g. image
data), data comprising text such as documents or records,
audio data or any other type of data that can be classified by
neural network models. In some embodiments, the data
comprises medical data, such as medical images (e.g. x-ray
images, ultrasound images, etc.) or medical records.

In some embodiments, the model may be trained to
produce one or more classifications (e.g. labels) for data. In
some embodiments, the model may be used to classify
medical imaging data of a particular anatomical structure,
such as the vascular system, heart, or any other anatomical
structure.

In some embodiments, the model may be used to detect
the presence of an object in an image. In other embodiments,
the model may be used to identify the location of an object
in an image. An example image comprising a stent is shown
in FIG. 4 which shows a stent 400, either end of which is
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marked by two balloon markers 402 and 404. In some
embodiments, the model may be trained to process images
such as that shown in FIG. 4 and produce an output
indicating whether a stent is present in a medical image (e.g.
a stent detection model). In this embodiment, the output
layer of the model may have two neurons suitable for binary
output, for example, the first model may output that a stent
is present, or that a stent is not present in an image.

In other embodiments, the model may be trained to
process data such as the data shown in FIG. 4 but, rather than
detecting the presence of a stent, the model may be trained
to produce a different output. A bounding box 406 is also
shown in FIG. 4, indicating the extent of the stent 400. In
some embodiments, the output layer of the model may
comprise four neurons, a first pair corresponding to the x-y
coordinates of the center of the bounding box 406 surround-
ing the stent and a second pair corresponding to the width
and height of the bounding box. In this way, the location of
the stent 400 can be output for each medical image. It will
be appreciated that these are merely examples, however, and
that the output layer of the model may comprise other
numbers of neurons that produce different outputs. For
example, instead of producing coordinates and dimensions
of a bounding box (e.g. the box 406), the model may be
trained to output the x,y coordinates of one or both ends of
the stent (e.g. the balloon markers 402, 404) in the image.

Referring again to FIG. 3, as noted above, the set of
instructions, when executed by the processor 302, cause the
processor to receive training data comprising a first set of
annotated images. The training data may, for example,
include a plurality of images, such as medical images, with
annotations (e.g. labels) marked on the images, or otherwise
included in image data associated with the plurality of
images. As in the example given above, the annotations may
include an indication of the presence of (or absence of) an
object (e.g. a stent) in an image, or the location (xy
coordinates and/or dimensions of a bounding box) of the
object in the image. The annotations included in the images
of' the training data may be created or provided, for example,
by a medical professional who has reviewed an image and
indicated the presence of, and/or the location of, a particular
object in the image.

As will be apparent to those familiar with neural net-
works, weights of neurons in one or more layers of the
neural network may be adjusted based on the training data.
In order to reduce the effects of overfitting, an initial
regularization parameter may be applied to the neural net-
work model. As noted above, the regularization parameter
may comprise at least one of a dropout parameter, relating
to neurons in the neural network model, or a dropconnect
parameter, relating to connections between neurons in the
neural network model. In some embodiments, the regular-
ization parameter may comprise a combination of dropout
and dropconnect parameters such that some neurons are
ignored and some connections between neurons are ignored
during training.

The initial regularization parameter may be selected arbi-
trarily. In some embodiments, the initial regularization
parameter may be given a predefined value, such as 0.5. A
value of 0.5 causes 50% of the neurons or connections to be
temporarily ignored. By “temporarily”, is it meant that the
proportion of neurons or connections ignored will change
when the regularization parameter is changed to a different
value. If the regularization value is set to 0, then no neurons
or connections will be ignored. In some embodiments, the
regularization parameter may be changed after one epoch
(i.e. after all of the training data has been fed into the neural
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network once). In other embodiments, the regularization
parameter may be changed when a batch (e.g. a subset of,
say, 16, 32, 64, 128 or 256 items) of the total training data
has been fed into the neural network (i.e. when a step of
training has been completed).

As noted above, training the neural network model
involved updating weights of neurons in the model as
training data is presented to the model and as the model
“learns” from the training data. Thus, in some embodiments,
causing the processor 302 to re-train the neural network
model may comprises causing the processor to set weights
of neurons in one or more layers of the model based on
weights of the neurons during the preceding iteration.

After an amount of training (e.g. after an amount of
training data has been presented to the model, such as a
number of epochs or after a loss function converges to a
steady state) the regularization parameter is adjusted and the
neural network model is re-trained, or trained further, with
the adjusted regularization parameter (i.e. with a different
proportion of neurons or connections ignored in the model).
This cycle of adjusting the regularization parameter and
re-training the model may be repeated and, in this way, the
adjustment of the regularization parameter is said to be
iterative. Re-training the neural network model may involve
presenting training data to the model which has already been
used to train the model. However, with a different regular-
ization parameter, a different combination of neurons and/or
connections are active in the model and, therefore, training
of the model may be improved even when the same set of
training data is presented. The re-training of the neural
network model with an adjusted dropout parameter may be
considered to be a fine-tuning process, whereby the normal
training of the model (e.g. by updating weights of the model)
is improved as a result of the varying regularization param-
eter.

As training progresses, and weights of neurons in the
neural network are updated, a loss function (also referred to
as a cost function) of the model may reduce. The loss
function of a model quantifies how accurately the model
performs. For example, in a neural network model used for
object localization (e.g. a model used to determine the
location of an object in a medical image), the loss function
may initially be relatively high (e.g. the location of the
object may be accurate to within around 20 pixels), as the
model is in the early stages of training. As the training of the
model progresses, the loss function may improve (i.e.
reduce) as the location of the object is more accurately
determined by the model (e.g. accurate to within around 5
pixels). The accuracy of the model may reach a maximum,
at which point, further training of the model is unlikely to
further improve the accuracy of the model, and the loss
function fails to reduce further. At this stage, the loss
function is said to have converged, or minimized. It will be
appreciated that a maximum accuracy of the model may not
constitute an accuracy of 100%, but may constitute an
accuracy which is the best achievable accuracy given the
parameters of the neural network model and the training data
available.

As previously noted, the set of instructions when executed
by the processor 302, furthers cause the processor to receive
test data comprising a second set of images; and test the
neural network model using the test data. The test data may,
for example, comprise a second set of images which is
different from the first set of images in the training data. The
loss function associated with test data, which may also be
referred to as hold-out data, is used alongside the loss
function associated with the training data to determine how
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to vary parameters of the neural network model, such as the
regularization parameter. For example, when the trained
neural network is tested using the test data (i.e. when the
second set of images is presented to the neural network
model in a testing stage), a line-search technique may be
used to identify a regularization parameter that results in the
smallest loss function of the model (i.e. the regularization
parameter that minimizes the loss function). In some
examples, the amount by which to increase or decrease the
regularization parameter may be determined based on heu-
ristics. As explained below, the change to the regularization
parameter may be implemented by multiplying the param-
eter by some constant (i.e. greater than 1 to increase the
parameter, and less than 1 to decrease the parameter). Thus,
the adjustment made to the regularization parameter may be
based on the change in the loss function between iterations
of testing the neural network.

The choice of how to vary the regularization parameter
between iterations of re-training the neural network model
may be made based on how the loss function of the model
changes (for the training data and the test data). In some
embodiments, causing the processor 302 to adjust the regu-
larization parameter may comprise causing the processor to
increase the regularization parameter when it is determined
that the loss function of the model is higher for the test data
than for the training data, and the loss function has mini-
mized or converged for the training data. If the loss function
of the model for the training data has minimized (i.e.
converged to an optimum value) but the loss function for the
test data is relatively higher, then this may be a sign of
overfitting. Thus, increasing the regularization parameter in
such a scenario may help to stop the model from overfitting
the data. The amount by which the regularization parameter
is increased may be based on the results seen from present-
ing the test data to the neural network model. The regular-
ization parameter may, in some embodiments, be increased
by a factor a (i.e. o multiplied by the current regularization
parameter), where o>1 (but not so large as to make the
regularization parameter greater than 1). This adjustment
would, of course, result in an increased number of neurons
or connections being temporarily ignored in the next itera-
tion of training the model. The neural network model is then
be re-trained using the increased regularization parameter.

Causing the processor 302 to adjust the regularization
parameter may, in some embodiments, comprise causing the
processor to decrease the regularization parameter when the
loss function for the training data is greater than or equal to
the loss function for the test data. This may indicate that the
neural network is underfitting.

In some embodiments, causing the processor to adjust the
regularization parameter may comprise causing the proces-
sor to decrease the regularization parameter when it is
determined that the loss function of the model has converged
to a steady state for the training data and the test data. It will
be apparent to the skilled person that the loss function for the
training data and the test data do not need to converge to the
same value. In such a scenario, since the loss function for the
model for both the training data and the test data has
converged (whether it has converged to a relatively high
value or to a value near to or at the optimal value), it may
be determined that the neural network model is “learning”
well from the training data. Thus, the learned weights of the
neurons are used as initial weights for a new training process
(e.g. with new training data), and the regularization param-
eter is reduced. The regularization parameter may be
decreased, for example by a factor §§ (i.e. § multiplied by the
current regularization parameter), where O0<f<1. This
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adjustment would, of course, result in fewer neurons or
connections being temporarily ignored in the next iteration
of training the model. As above, the amount by which the
regularization parameter is decreased may be based on the
results seen from presenting the test data to the neural
network model. The neural network model may then be
re-trained using the decreased regularization parameter, and
the updated neuron weights.

It has been found that, by applying the above-described
technique, training of the neural network model may be
achieved quickly and efficiently. The set of instructions,
when executed by the processor 302, may, in some embodi-
ments, further cause the processor to conclude training of the
neural network model when it is determined that the loss
function is minimized (or converged) for the training data
and the test data. Thus, once the loss function of the model
is seen to converge, and the value at which the loss function
converges is at its optimal value (i.e. as small as possible),
the loss function can be considered to have been minimized,
such that no further training of the model is required.
Training of the neural network model is, therefore, con-
cluded at this stage.

The adjustment of the regularization parameter is thereby
based on the convergence of the loss function of the model.
That is to say, as the loss function changes over the training
process, the regularization parameter is adjusted accord-
ingly, with the intention of causing the loss function to
converge more rapidly and to a smaller (i.e. more optimum)
value. In general, the regularization parameter is adjusted as
the neural network model is trained, until the loss function
converges to a steady state. In this context, a steady state is
considered to be a state in which the loss function varies by
less than a defined amount, or varies within a defined
threshold. At the steady state, the loss function may be
approximately constant. In some embodiments, the loss
function of the model may be considered to have converged
to a steady state when the loss function changes by less than
a defined amount between subsequent iterations.

As noted above, the neural network model may be used to
classify or annotate images, for example, annotating images
with an indication or location of an object in the image.
Thus, in some embodiments, the training data may comprise
images annotated with at least one of: an indication of the
presence of an object in the image; and an indication of the
location of an object in the image. In some embodiments, the
training data may comprise medical images. However, those
skilled in the relevant art will understand that the systems
and methods described herein may be used in connection
with neural network models trained on other types of data.

A further aspect of the invention relates to a method for
training a neural network model. FIG. 5 illustrates a com-
puter-implemented method 500 for training a neural network
model according to embodiments. The illustrated method
500 can generally be performed by or under the control of
the processor 302 of the system 300. The method 500 may
be partially or fully automated according to some embodi-
ments.

The method 500 comprises, at step 502, receiving training
data comprising a first set of annotated images. As noted
above, the images may include medical images, and the
annotations in the images may include an indication of the
presence of an object (e.g. a stent), and/or an indication of
the location of the object.

At step 503, the method 500 comprises receiving test data
comprising a second set of annotated images.

At step 504, the method 500 comprises training the neural
network model using the training data, based on an initial
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regularization parameter. The initial regularization param-
eter may be selected arbitrarily, or randomly, and is repre-
sentative of the proportion of neurons or connections
between neurons that are temporarily ignored or omitted
during training.

The method 500 comprises, at step 506, iteratively per-
forming steps of: testing 506A the trained neural network
model using the test data to determine a loss function of the
trained neural network model for the test data; adjusting
506B the initial regularization parameter based on the loss
function of the neural network model for the training data
and the loss function of the neural network model; re-
training 506C the neural network model using the training
data, based on the adjusted regularization parameter,
wherein the iterative steps are performed until it is deter-
mined that the loss function for the training data and the loss
function for the test data have both converged to a steady
state.

The iterative adjustment of the regularization parameter is
indicated by the arrow 508.

According to a further aspect, there is also provided a
computer program product. FIG. 6 shows, schematically, a
computer readable medium 602 and a processor 604.
According to embodiments, a computer program product
comprises a computer readable medium 602, the computer
readable medium having computer readable code embodied
therein, the computer readable code being configured such
that, on execution by a suitable computer or processor 604,
the computer or processor is caused to perform the method
or methods described herein. Thus, it will be appreciated that
the disclosure also applies to computer programs, particu-
larly computer programs on or in a carrier, adapted to put
embodiments into practice. The program may be in the form
of a source code, an object code, a code intermediate source
and an object code such as in a partially compiled form, or
in any other form suitable for use in the implementation of
the method according to the embodiments described herein.
The processor 604 may comprise, or be similar to the
processor 302 described above.

The processor 302, 604 can comprise one or more pro-
cessors, processing units, multi-core processors or modules
that are configured or programmed to control the system 300
in the manner described herein. In particular implementa-
tions, the processor 302, 604 can comprise a plurality of
software and/or hardware modules that are each configured
to perform, or are for performing, individual or multiple
steps of the method described herein.

The term “module”, as used herein is intended to include
a hardware component, such as a processor or a component
of'a processor configured to perform a particular function, or
a software component, such as a set of instruction data that
has a particular function when executed by a processor.

It will be appreciated that the embodiments of the inven-
tion also apply to computer programs, particularly computer
programs on or in a carrier, adapted to put the invention into
practice. The program may be in the form of a source code,
an object code, a code intermediate source and an object
code such as in a partially compiled form, or in any other
form suitable for use in the implementation of the method
according to embodiments of the invention. It will also be
appreciated that such a program may have many different
architectural designs. For example, a program code imple-
menting the functionality of the method or system according
to the invention may be sub-divided into one or more
sub-routines. Many different ways of distributing the func-
tionality among these sub-routines will be apparent to the
skilled person. The sub-routines may be stored together in

20

25

30

35

40

45

50

55

60

65

16

one executable file to form a self-contained program. Such
an executable file may comprise computer-executable
instructions, for example, processor instructions and/or
interpreter instructions (e.g. Java interpreter instructions).
Alternatively, one or more or all of the sub-routines may be
stored in at least one external library file and linked with a
main program either statically or dynamically, e.g. at run-
time. The main program contains at least one call to at least
one of the sub-routines. The sub-routines may also comprise
function calls to each other. An embodiment relating to a
computer program product comprises computer-executable
instructions corresponding to each processing stage of at
least one of the methods set forth herein. These instructions
may be sub-divided into sub-routines and/or stored in one or
more files that may be linked statically or dynamically.
Another embodiment relating to a computer program prod-
uct comprises computer-executable instructions correspond-
ing to each means of at least one of the systems and/or
products set forth herein. These instructions may be sub-
divided into sub-routines and/or stored in one or more files
that may be linked statically or dynamically.

The carrier of a computer program may be any entity or
device capable of carrying the program. For example, the
carrier may include a data storage, such as a ROM, for
example, a CD ROM or a semiconductor ROM, or a
magnetic recording medium, for example, a hard disk.
Furthermore, the carrier may be a transmissible carrier such
as an electric or optical signal, which may be conveyed via
electric or optical cable or by radio or other means. When the
program is embodied in such a signal, the carrier may be
constituted by such a cable or other device or means.
Alternatively, the carrier may be an integrated circuit in
which the program is embedded, the integrated circuit being
adapted to perform, or used in the performance of, the
relevant method.

Variations to the disclosed embodiments can be under-
stood and effected by those skilled in the art in practicing the
claimed invention, from a study of the drawings, the dis-
closure and the appended claims. In the claims, the word
“comprising” does not exclude other elements or steps, and
the indefinite article “a” or “an” does not exclude a plurality.
A single processor or other unit may fulfil the functions of
several items recited in the claims. The mere fact that certain
measures are recited in mutually different dependent claims
does not indicate that a combination of these measures
cannot be used to advantage. A computer program may be
stored/distributed on a suitable medium, such as an optical
storage medium or a solid-state medium supplied together
with or as part of other hardware, but may also be distributed
in other forms, such as via the Internet or other wired or
wireless telecommunication systems. Any reference signs in
the claims should not be construed as limiting the scope.

The invention claimed is:
1. A system configured for training a neural network
model, the system comprising:
a memory comprising instruction data representing a set
of instructions; and
a processor configured to communicate with the memory
and to execute the set of instructions, wherein the set of
instructions, when executed by the processor, cause the
processor to:
receive training data comprising a first set of annotated
images;
receive test data comprising a second set of annotated
images;
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train the neural network model using the training data,
based on an initial regularization parameter to deter-
mine a training loss function of the neural network
model; and

iteratively perform iterative steps of:

after the neural network model has been trained, testing
the neural network model using the test data to
determine a testing loss function of the neural net-
work model for the test data;

adjusting the initial regularization parameter based on
the training loss function and the testing loss func-
tion;

re-training the neural network model using the training
data, based on the adjusted initial regularization
parameter; and

redetermining the training loss function based on the
re-training;

wherein, the processor is further configured to iteratively

perform the iterative steps until the training loss func-
tion and the testing loss function have both converged
to a steady state.

2. The system according to claim 1, wherein the initial
regularization parameter comprises at least one of a dropout
parameter, relating to neurons in the neural network model,
or a dropconnect parameter, relating to connections between
neurons in the neural network model.

3. The system according to claim 1, wherein the adjust-
ment made to the initial regularization parameter is based on
a difference between the training loss function and the
testing loss function.

4. The system according to claim 1, wherein causing the
processor to adjust the initial regularization parameter com-
prises causing the processor to increase the initial regular-
ization parameter when it is determined that the testing loss
function is higher than the training loss function, and the
training loss function has minimized for the training data.

5. The system according to claim 1, wherein causing the
processor to adjust the initial regularization parameter com-
prises causing the processor to decrease the initial regular-
ization parameter when it is determined that the training loss
function of the neural network model is higher than the
testing loss function.

6. The system according to claim 1, wherein causing the
processor to train the neural network model or re-train the
neural network model comprises iteratively training the
neural network model using the training data until the
training loss function converges to a steady state.

7. The system according to claim 6, wherein causing the
processor to re-train the neural network model comprises
causing the processor to set weights of neurons in one or
more layers of the neural network model based on weights
of the neurons during a preceding iteration.
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8. The system according to claim 6, wherein the training
loss function is considered to have converged to the steady
state when the training loss function changes by less than a
defined amount between subsequent iterations.

9. The system according to claim 1, wherein the training
data and the test data both comprise images annotated with
at least one of:

an indication of a presence of an object in the image; and

an indication of the location of an object in the image.

10. The system according to claim 9, wherein the training
data and the test data both comprise medical images.

11. The system according to claim 1, wherein the initial
regularization parameter defines a proportion of neurons or
connections between neurons to be temporarily excluded
from a particular layer of the neural network model during
training.

12. A method of training a neural network model, the
method comprising:

receiving training data comprising a first set of annotated

images;

receiving test data comprising a second set of annotated

images;

training the neural network model using the training data,

based on an initial regularization parameter to deter-
mine a training loss function of the neural network
model; and

iteratively performing iterative steps of:

after the neural network model has been trained, testing
the neural network model using the test data to
determine a testing loss function of the neural net-
work model for the test data;

adjusting the initial regularization parameter based on
the training loss function and the testing loss func-
tion;

re-training the neural network model using the training
data, based on the adjusted initial regularization
parameter; and

redetermining the training loss function based on the
re-training;

wherein the method is to iteratively perform the iterative

steps until the training loss function and the testing loss
function have both converged to a steady state.

13. A computer program product comprising a non-
transitory computer readable medium, the computer read-
able medium having computer readable code embodied
therein, the computer readable code being configured such
that, on execution by a suitable computer or processor, the
computer or processor is caused to perform the method of
claim 12.
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