Core-sets for Fair and Diverse Data Summarization

Sepideh Mahabadi and Stojan Trajanovski

Constrained / Fair Diversity Maximization

Input:

sets of vectors $P_1, \dots, P_m, P = \bigcup_i P_i$ and $k_1, \dots, k_m \leq d, k = \sum_i k_i$

Goal: pick k_i points $S_i \subset P_i$ s.t. the diversity of the picked points $S = \bigcup_i S_i$ is maximized

Diversity measures for a subset *S* **of points**

- > MIN-PAIRWISE DIST = $\min_{p,q \in S} dist(p,q)$
- SUM-PAIRWISE DIST = $\sum_{p,q\in S} dist(p,q)$
- > SUM-NN DIST = $\sum_{p \in S} \min_{q \in S \setminus \{p\}} dist(p,q)$

 P_2

 $\boldsymbol{P}_{\boldsymbol{m}}$

000

Applications in Summarization

Modeling recency in user's feed generation

- > Each message has a timestamp being posted
- > Show a "diverse" summary to the user
- Goal: show more recent messages and less of old messages
- > Divide the messages in a month into four groups based on the week they have been posted
- \succ Set k_i to be higher for more recent weeks

Recommendation System

Different Movie Genres

Core-sets for Diversity Maximization

Input:

A point set P_i along with k_i

Goal: a summarization algorithm \mathcal{A}

- \succ Processes each P_i independently
- ▶ produces a small summary $S_i = \mathcal{A}(P_i) \subseteq P_i$

Main Property

Fair diversity of the data is approximately preserved, i.e.,

 $div_{k_1,k_2,\cdots,k_m}(S) \ge \frac{1}{\alpha} div_{k_1,k_2,\cdots,k_m}(P)$ where S is the union of all core-sets $S = \bigcup_i S_i$ and

$$div_{k_1,k_2,\cdots,k_m}(P) = \max_{T_1 \subseteq P_1,\dots,T_k \subseteq P_k, |T_i|=k_i} div\left(\bigcup_i T_i\right)$$

Theoretical results

Table 1

	EDM	Core-set setting			
Diversity Notion	FDIVI	Approx.	Core-set size	Reference	
Min-Pairwise Dist	θ (m) [MMM20, AMMM22]	0(1)	<i>O(k)</i> per group	[MMM20]	
Sum-Pairwise Dist	θ (1) [AMT13]	$(1 + \epsilon)$	depends on <i>n</i> or aspect ratio	[CPP18]	
		0(1)	$O(k_i^2)$ per group	[This work]	
SUM-NN DIST	<i>θ</i> (1) [BGMS16]	$O(m \cdot \log k)$	$O(k^2)$ per group	[This work]	

Algorithm 1 Core-set Construction Algorithm for SUM-PAIRWISE **Input** a point set P_i , together with parameters k_i and k (where $k = k_1 + \cdots + k_m$) **Output** a subset $S_i \subseteq P_i$ 1: $S_i = \{p_1, \dots, p_{k_i}\} \leftarrow \text{GMM}(P_i, k_i)$ 2: $T \leftarrow \emptyset$ 3: for $p \in S_i$ do for j = 1 to k_i do $T \leftarrow T \cup$ any point $p_i \in P_i \setminus T$ s.t. $\operatorname{argmin}_{q \in S_i} \operatorname{dist}(p_j, q) = p$. end for 7: end for 8: $S_i \leftarrow S_i \cup T$ 9: return S_i

Algorithm 2 Core-set Construction Algorithm for SUM-NN

Input a point set P_i , together with parameters k_i and k (where $k = k_1 + \cdots + k_m$) **Output** a subset $S_i \subseteq P_i$ 1: $S_i \leftarrow \emptyset$ 2: for j = 1 to k do $G_i = \{p_1, \ldots, p_{k+1}\} \leftarrow \text{GMM}(P_i, k+1)$ 4: $S_i \leftarrow S_i \cup G_i$ 5: $P_i \leftarrow P_i \setminus G_i$

6: **end for**

7: return S_i

Experiments

Our experiments show the effectiveness of our core-set approach.

- > [need for FDM] We demonstrate why we need to resort to FDM as DM outcome does not provide the desired fairness (Figure 1);
- > [price of fairness (balancedness)] Applying FDM, we have a small loss of diversity while we achieve the desired fairness (Table 2);
- > [effectiveness of our core-sets] We achieve a 100x speed-up while losing the diversity by only a few percent (Table 3) when applying FDM to the union of core-sets vs. FDM on the full data.

FD

Experimental results

Figure 1. DM algorithm outcomes with equidistant time periods as colors (m = 4) with k = 20.

DM vs. FDM		SUM-PAIRWISE	SUM-NN	MIN-PAIRWISE	
colors	k_i	$\sum k_i$	% Div. loss	% Div. loss	% Div. loss
[2, 2, 2,	2]	8	1.22%	9.66%	51.57%
[3, 3, 3,	3	12	0.98%	14.27%	49.99%
[4, 4, 4]	4	16	0.50%	13.72%	48.78%
[5, 5, 5,	5	20	0.47%	18.96%	48.05%
[6, 6, 6,	6]	24	0.19%	9.48%	47.20%
[2, 4, 6,	8]	20	0.42%	15.40%	48.05%
[3, 6, 9, 1]	[2]	30	0.29%	13.29%	46.34%
[4, 8, 12, 1]	[6]	40	0.25%	1.98%	45.52%
[5, 10, 15, 2]	20	50	0.16%	9.62%	44.48%
[6, 12, 18, 2]	24]	60	0.12%	3.98%	43.60%

Table 2. The loss of diversity (% Div. loss) between DM vs. FDM for the Reddit dataset.

Table 3. The loss of diversity (% Div. loss), and the running time gains (x times faster) of the FDM when applied to the union of core-sets compared to FDM applied to the full data.

DM full data vs. core-sets		SUM-PAIRWISE		SUM-NN		Min-Pairwise	
colors k_i	$\sum k_i$	% Div. loss	Time gain (\times)	% Div. loss	Time gain (\times)	% Div. loss	Time gain (\times)
[2, 2, 2, 2]	8	1.35%	196.24	2.22%	1769.70	0.00%	208.64
[3, 3, 3, 3]	12	0.67%	333.13	0.29%	888.55	0.00%	152.48
[4, 4, 4, 4]	16	1.21%	539.69	-1.59%	474.26	0.00%	122.29
[5, 5, 5, 5]	20	1.17%	432.68	-0.44%	294.23	0.00%	89.08
[6, 6, 6, 6]	24	0.94%	130.87	-3.03%	183.28	0.00%	63.69
[2, 4, 6, 8]	20	1.50%	845.98	-1.80%	285.68	0.00%	91.44
[3, 6, 9, 12]	30	1.06%	134.76	2.27%	110.36	0.00%	53.05
4, 8, 12, 16]	40	1.02%	182.06	-0.88%	57.88	0.00%	36.51
, 10, 15, 20	50	1.16%	194.36	0.71%	34.90	0.00%	26.97
, 12, 18, 24]	60	1.27%	172.25	-0.49%	23.71	0.00%	20.53

References

- [MMM20] Moumoulidou et al., Diverse Data Selection under Fairness Constraints. arXiv, 2020. [AMMM22] Addanki et al., Improved Approximation and Scalability for Fair Max-Min Diversification. arXiv, 2022.
- [AMT13] Abbassi et al., Diversity Maximization Under Matroid Constraints. In KDD'13.
- [BGMS16] Bhaskara et al., Linear Relaxations for Finding Diverse Elements in Metric Spaces. In NIPS'16.
- [CPP18] Ceccarello et al., Fast Coreset-based Diversity Maximization under Matroid Constraints. In WSDM'18.