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Abstract

The aim of this dissertation is to investigate the robustness of time-varying communica-

tion networks under different kind of failures. The work relies on the widely accepted

temporal network analysis and network robustness. Both approaches have never been

used together for performance evaluation of a networked systems under intelligent at-

tacks. The work considers several temporal theoretical models and data from real world.

Temporal robustness is evaluated, measuring relative change in performance metric before

and after sustaining several intelligent attacks and random failures.

The results show that temporal networks, where some nodes are more dominant or central,

are more affected by intelligent attacks than random errors. Moreover, different intelli-

gent attacks show similar effect on the temporal robustness, because the same nodes are

recognized as “important entities” in the temporal network. Contrarily in temporal net-

works where all the nodes have similar properties, random failures and all the intelligent

attacks cause the same effect. This work also defines and determines robustness range

for all intelligent attacking strategies, which gives all possible temporal robustness values

respect to choice of attacked nodes. These conclusions suggest better protection of im-

portant entities or decentralized network architecture, which leads to more robust design

of the system.
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Chapter 1

Introduction

This dissertation explores the effects of several error and attack strategies on real systems

and theoretical models. The main goal is to understand how time-varying networks react

to random errors and targeted attacks.

1.1 Motivation

The functionalities of real world systems are based on the communications and interactions

of participating entities. Those entities cannot perform their actions individually and

independently. The required input for one entity depends on the outcome that some

other produces. Naturally, those systems can be modelled as networks. Communication

between our friends, transport network in a certain area, interactions and contractions

between brain cells have fascinated scientists for decades.

(a) Static network

t=1 t=2 t=n

time

...

...

(b) Temporal network

Figure 1.1: Network topologies

In a famous example from 1967 “six degree of separation” [Mil67] by Stanley Milgram, a

message initiated by one person needs at most 6 intermediate people to reach everyone

on the planet. Using a straightforward approach one can model the entities in the system

as a static network topology (Figure 1.1a). Although people are still present in the

1
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system, their ability of communication is not constant. Due to the environmental, the

technological or even subjective nature the communication between them is not consistent

over a given period. People may decide to transfer the information later or communication

devices that they use to have some technical problems which again delays the spreading.

People interactions are time-varying and fast evolving during the time. Accordingly,

the network representation should express the feature of time-dependent and ordered

interactions. The last leads us to temporal networks (Figure 1.1b), where interactions

are subject to changes during the time. In the other words, this representation may be

considered as a collection of several static representations.

Complex network analysis is a driving force behind the research in many real systems

and people interactions. It represents every system as a network topology with non-

trivial features, where the entities (participants) are represented by the set of vertices

and their interactions [BLM+06] as a pairs of vertices or links. More naturally, complex

networks are recognized by real-world examples such as the Internet and World Wide

Web [FFF99, HA99], transport networks (road, air or train traffic), biological, brain

networks [VCAL11] and protein relations, human interactions (scientists’ collaborations,

memberships or social networks) and many others. Complex networks provide substantial

tools for analyzing the interactions inside the network that can answer many interesting

research questions.

The common approach includes network analysis in a fixed time. This means that only the

interactions at a given moment are taken into consideration, at the same time neglecting

the evolution and the temporal properties of the network [Kos09, KKK00]. In some cases,

where the network evolves more slowly, for instance road networks, static analysis still

makes sense. On the other hand, the changes in the network may have a significant

role. In cases where interactions are prone to fast changes, static analysis leads to wrong

results [TMML09, TSM+10]. For example, collaboration networks between scientists can

evolve rapidly during a conference or communication between moving taxi cabs equipped

with wireless devices is prone to fast change due to their mobility and in-stability of

wireless connection. The main weakness of static network representation is overestimation

of temporal connectivity: two entities can interact or communicate at one moment, but

this may not be a case at the next. For instance, discussions between scientists at a

conference are more intensive during the presentation sessions than late at night. This

shows us the importance of the chosen moment, when a network’s representation is taken.

Hence the most relevant information for the network’s interactions or particular network

metric (e.g. average distance between nodes) could be obtained considering the network

as a dynamic system.

For this reason I employ temporal network analysis. For each pair of nodes we consider

the time required to spread a message from one to the other. This time defines temporal

distance. In order to characterize the whole temporal network, temporal distances between

all pairs participate in an averaged sum that defines the performance metric for evaluation.
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On the other hand, investigating the performance of a real networked system after it has

sustained structural damage has been extensively considered [AJB00, CNSW00]. Several

measures of network robustness have been proposed and used to evaluate the change in

performance under random errors or intelligent attacks. Both failures are motivated from

real examples. Random errors are usually initiated by some internal fault, expired and

old parts in the system or unattended change. Intelligent attacks may be regarded as

malicious external damage, such as malware software or planned attack on important

hubs in a computer network, attacking influential people or targeting important objects

like power plants in some country.

Current research in network robustness usually considers static characteristics, neglecting

the time-changes and the time-ordering in real systems. By adopting a static approach,

only performance of the system at a certain moment is measured, ignoring the probability

that at the previous moment the same value was significantly lower or higher. For this

reason the dissertation proposes two important changes for evaluating robustness. Firstly,

I extend the definition of robustness for temporal networks, which defines temporal net-

work robustness. Secondly, both random errors and planned intelligent attacks targeting

important nodes are considered in the evaluation.

1.2 Problem Description

In order to evaluate the performance of the network after a disturbance, we should measure

the relative change in performance compared with the state before it. The measure of

relative change in network performance is robustness. Robustness may be thought as a

measure of “goodness”, an indicator of how well the network performs after sustaining

damage. Denoting robustness by value R, R = 0 means that the network is totally

destroyed and cannot perform any more. Robustness value R = 1 reflects the same

performance as previously. In general, it is a value in the interval [0, 1] and values closer

to 1 report for satisfactory performance after some structural damage. In the robustness

evaluation temporal properties and the dynamic of a system should be taken into account.

This robustness metric for both static graphs and temporal networks should be as simple

as possible, interpretable and feasible, which means suitable for all types of finite networks

[VMDW+10]. In order to calculate temporal network robustness we need to agree which

performance metric will be considered. At a certain moment two nodes in the network

may not be connected. A single message could be transferred between any two nodes if

there is a path between them. However, if there is no path between the sender and the

destination, the message is re-sent by the nodes that already have it. At a time later,

if there is a path to some node that has the message, the destination receives it. The

average time required to spread the information between two nodes is temporal efficiency.

Temporal efficiency is employed as a performance metric whose relative change defines
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temporal robustness.

The mapping of a real system into temporal network representation and robustness eval-

uation is shown in Figure 1.2. Nodes that sustain structural damage and links incident

to them are coloured red in Figure 1.2c.

time

time

time

time

time

time

(a) Real system

time

(b) Before damage

time

(c) After damage

Figure 1.2: Robustness is relative change of the network performance

Structural damages in temporal networks differ in nature. In general, they can be divided

into two classes: random errors and intelligent attacks. In order to determine the severity

of damage that a network sustains we define a probability of error/attack. Probability

of error/attack determines the number of removed nodes, which means that increased

probability of error/attack implies more nodes sustain errors/attacks. The main differ-

ence between random errors and intelligent attacks lies in the decision which nodes are

removed. Random error strategy randomly picks nodes and removes them from the net-

work. Intelligent attacks strategies target the nodes that have a certain node’s temporal

property (e.g. average degree of a node).

The work in this dissertation considers random error and several attacking strategies eval-

uated on different temporal networks. Two general groups are used: theoretical temporal

models and real temporal data sets.

The main findings of this dissertation can be summarized as follows:

• Temporal robustness shows graceful decrease in both random errors and intelligent

attacks, unlike the behaviour of the robustness in static networks.

• For each intelligent attack strategy, robustness range is evaluated; that is, expected

deviation of temporal network robustness by different choice of removed nodes.

The robustness range can determines all possible values of robustness. If temporal

robustness is larger, it means that there are some nodes, considered as “important

hubs” and their failure will significantly affect the performance; otherwise all the

nodes contribute similarly in the general system performance.
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• The influence of different intelligent attacks strategies is similar for a particular tem-

poral model or real temporal network, since same nodes are considered as important

in all the strategies. This finding expresses the behaviour of important entities to

be: highly connected, most of the paths traverse through them and contribute at

most in information spreading.

• In real-world temporal networks and mobility models the influence of intelligent

attacks is higher than in the case of random errors, due to the presence of impor-

tant pre-dominant nodes. Temporal robustness value can drop by 50% to 75% if

important entities are attacked, rather than randomly chosen nodes. This means

that more robust design can be achieved in two ways. Firstly, important entities

in the system should be better protected. Secondly, by considering changes in the

architecture and, modification into more decentralized (e.g. P2P or multiple mini

data-centres) design is recommended.

• In the case of equally distributed temporal networks (e.g. Erdős-Rényi or Markov

temporal networks), temporal robustness is similar for intelligent attacks and ran-

dom error strategy, because all the nodes have similar temporal property (e.g. av-

erage node degree, temporal closeness). In this case, temporal robustness can be

determined irrelevant to attacking strategy and choice of attacked nodes.

1.3 Outline

The remaining part of the dissertation is organized as follows. Chapter 2 presents the

concepts of temporal metrics and network robustness, including performance metrics and

implementation issues. In Chapter 3 details of theoretical temporal network models are

given. Chapter 4 evaluates temporal network robustness on different models and dis-

cusses the results. Case studies that consider temporal network data sets from real world

and robustness evaluation are presented in Chapter 5. Chapter 6 states conclusions and

suggests directions for future work.



Chapter 2

Temporal Metrics and Robustness

Networked real world systems could be modelled as network topologies or, as is com-

monly accepted, as networks. For instance, in a computer network they can be process-

ing/computational nodes or just routers and hubs that re-route/transmit a networking

packet. The entities are not isolated single elements and performing their service, they in-

teract (e.g.exchanging information or communicating). Their interactions are represented

as links between the nodes that communicate.

The interactions in one system are subject of changes during a certain period. The

intensity of interaction between two entities varies at all the time moments. In order to

measure performance of time-varying network, we should consider suitable metric that

will express the system performance at all time moments. Static metrics consider the

network at a certain moment. In this case measured performance is only determined by

a certain system state, neglecting all previous states which lead us to wrong conclusions.

For this reason, temporal metrics that count all time steps of the temporal network are

employed in the analysis.

Apart from network topology, the system taken in general as a unit is responsible for

performing some service. In a road network, it is the quality of the transport, in banking

system it is a financial transaction, in social network the speed of information spreading.

In order to quantify the service performance we need to define a metric. Current research

already has reported measures [BLM+06, dFCRTVB07] like average shortest path, quality

of service or size of the giant component. The metric should be descriptive enough to

present the performance in general, apart from previously mentioned temporal property.

2.1 Background and Related Work

Robustness of networks have been intensively studied in the last few decades. How-

ever, due to the complexity of communication networks such as multiple layers, ne-

glecting service aspects or very often dynamic nature of the networking systems, it is

6
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difficult to generalize robustness metric. Some surveys of network robustness in gen-

eral were done in [CMH+07, VMDW+10]. The earliest studies were on network re-

liability [SP78, Wil72, RA78] investigating connectivity of the network. These works

mainly focus on preserving connectivity after failures. Other work uses reliability poly-

nomials [PP94] for robustness evaluation. One shortcoming of reliability is unavail-

ability to characterize irregular failures. The recent study emphasizes power-law net-

works reliability [HKYH02], because this well modelled real world examples (e.g. World

Wide Web [FFF99]). Investigating the network performance after sustaining different

types of failures, including random error or intelligent attacks was studied by Albert et.

al. [AJB00]. Considered networks vary from static random models to scale-free networks

with predominant nodes. A more theoretical direction is followed by [CNSW00], consider-

ing network behaviour undergo nodes and/or edges removal. This work was extended by

investigation of what kinds of error and attacks are more disruptive for real systems and

models [HKYH02]. However, this work is mostly based on static network representation.

On the other hand, temporal network analysis aims to upgrade the model of static net-

works. The first recorded attempt to express temporal network property was made by

Kempe et. al. [KKK00], considering time labels of links. The authors proposed an algo-

rithm, but this approach neglects temporary disconnected nodes. Temporal correlation of

human-interactions was considered in [CE07]. In the same work periodical behaviour of

the systems is studied. The concept of temporal networks as a collection of static network

topologies taken in suitable time resolution was proposed in [Kos09]. This temporal rep-

resentation is used as a base in this work. Recently, the idea of temporal metrics, namely

temporal paths and temporal length were given in [TMML09, TSM+10].

Network robustness and temporal network analysis have rarely been used together in

performance evaluation of time-varying systems. Recently, by [SLM+11] the concept

of temporal network robustness has been defined with a framework suitable for temporal

models and real data-set. The way that robustness is evaluated considers random errors on

real systems and theoretical models. The dissertation extends this approach considering

network vulnerability under several intelligent attack strategies apart from random errors

and proposes the concept of robustness range. This variable reports for possible value of

robustness respect to the choice of attacked nodes.

2.2 Temporal Network Analysis

This section defines the concepts of Temporal Network Analysis, including temporal net-

works and temporal metrics used as performance metric of robustness evaluation.
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2.2.1 Temporal Networks

Networks are commonly used for representation of entities and their relations and inter-

actions. In this form, nodes are associated with presence of entities (e.g. communication

units, human beings) and links express their behaviour, communications, interactions or

other type of connection. The static graph and network representations take one state of

the network in a certain moment. Static representation (e.g in Figure 1.1a) is one that

has been commonly studied, considering different metrics for characterization of a certain

node (degree of a node, closeness centrality) or global metrics for all the nodes (e.g. clus-

tering coefficient). This analysis works well in cases where the graph change is slow and

it keeps the entities and their relations during the given time. An example taken from

traffic network reports more congested communication in some periods of the day than

others. In particular, spreading the information between two nodes in the network is more

probable when the communication is intensive, rather than less intensive periods. The

last shows us importance of the time choice, when a network’s representation is taken.

Hence, the most relevant information on the network’s interactions or a given metric (e.g.

average distance between nodes) could be obtained considering the network as a dynamic

system.

The limitation of static graph becomes significant in cases, in which we have a sharp

changes in the entities’ interactions. Because of this, we define temporal networks (e.g.

Figure 1.1b).

Definition 1. A temporal network G (t) = G (V,E (t)) is a sequence of n undirected static

network representations {G (ti)} = {G (V,E (ti))} (i = 1, 2, . . . , n− 1, n).

Temporal network may be thought as sequence of consecutive static graphs. During the

time evolution of the network the set of nodes V = V (t) = const, where |V | = N is kept

constant and only the set of links in the graph is subject to changes. The set of nodes

is fixed, which means that new nodes cannot be added to the graph nor nodes can be

removed. However, even in the case where the network sustains structural damage (error

or attack) the set of nodes is preserved and each node is counted in the final evaluation,

but attacked nodes do not contribute in the performance metric after the error/attack.

Formally, attacked nodes are counted in the averaging, although their contribution in the

performance function (temporal efficiency in this case) is zero.

2.2.2 Temporal Path Length

Temporal distance does not appear in static graphs. In static cases the condition for

spreading the information between two particular nodes is their connectivity or presence

of a path between these nodes. In temporal networks the information (message) travels

during the given time. At every time moment, a node receives the message, if it is
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connected by a path with at least one node that has already received it. For temporal

networks, the concept of temporal path is defined by following “flooding mechanism”:

At a certain moment t, a node b receives a message from node a if and only if there is a

path between a and b at that moment t. We define a temporal path between nodes a and

b by a flooding concept: a message sent by a at the moment t0 is received by n1 at the

moment (t0 + 1); the message sent by n1 is received by n2 at the next moment (t0 + 2);

and so on. In general a message sent by ni is received by ni+1 at the next moment (t0 + i)

for i = 0, 1, ..., d− 1, where a ≡ n0 and b ≡ nd. Temporal length of this path is d, the time

required for a message sent by a to be received by b.

In general, between two nodes there are more than 1 temporal path. At this point we can

define temporal distance.

Definition 2. Temporal distance dij (t1, t2) between nodes i and j is the smallest length

among all the temporal paths between i and j in the time interval [t1, t2].

In the following example descriptive details are given of how temporal distance is deter-

mined. To find a temporal distance between two nodes a searching algorithm is used,

which is very descriptive. For larger temporal networks, the more efficient method of

Lamport clocks [Lam78] is used, as shown in Section 2.5.

Example 1. Temporal network in 5 time moments as depicted in Figure 2.1. Calculate

temporal distance between nodes 1 and 5.

Solution. A straightforward method of calculating temporal distance between nodes 1 and

5 is to perform a Depth First Search (DFS) algorithm.

time

111

2

3

45

111

2

3

45

111

2

3

45

111

2

3

45

111

2

3

45

t=1 t=2 t=3 t=4 t=5

Figure 2.1: Temporal Network

We have two structures R and D for each node i: is reached (true/false) and the distance

from sender node at the moment (an integer). In the initial moment, all the distances are

set to infinity and all R variables to false, except the sender’s which distance is 0 and its

R is true.

At the first two moments nodes 2 and 4 are reached and the arrays D and R are updated.

At the third we have a link between nodes 3 and 5. However, 3 and 5 have not received
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Table 2.1: D and R values per node in d15 calculation

t = 1 1 2 3 4 5

D 0 1 ∞ ∞ ∞
R T T F F F

t = 2 1 2 3 4 5

D 0 1 ∞ 2 ∞
R T T F T F

t = 5 1 2 3 4 5

D 0 1 5 1 5

R T T T T T

information yet, so they are not connected with discovered nodes and the arrays R and

D remain as previously. There are no updates at the third and fourth moments. In the

fifth moment, nodes 3 and 5 are discovered by 2 (or 4) and we have the final distances.

The distance between nodes 1 and 5 is d15 = 5. �

Temporal distance is a metric between two nodes. Average temporal path length extends

the concept of temporal distance for the whole network. It gives averaged information for

the network behaviour in general.

Definition 3. In a given time interval [t1, t2] the average temporal distance over all pairs

of nodes defines the temporal length

LG (t1, t2) =
1

N (N − 1)

∑
i,j

dij (t1, t2)

of a temporal network G(t) in time interval [t1, t2].

For average temporal path length the following theorem holds.

Theorem 1. In temporal network G(t), considered in time interval [t1, t2], average tem-

poral length LG (t1, t2) ≥ 1.

Proof. It follows from the fact that temporal distance dij (t1, t2) ≥ 1, i 6= j. LG (t1, t2) is

averaged sum over all pairs of nodes.

The last means that average temporal length has a lower bound which can be obtained

if and only if we have a connected network in the first moment of temporal network.

The lower average temporal length means that there is good communication between

the entities and the information will be transferred more quickly than where the average

temporal length is a larger value. In the case when is possible to transmit a message

between each two nodes, average temporal length is a finite value. In the case where

during the time it is not possible to spread the message between two particular nodes i

and j temporal distance is not defined. In this case, we accept that temporal distance

is infinity. If at least one pair of nodes has temporal distance infinity, average temporal

length also becomes infinity. This is noted as a drawback of temporal length as a metric

and in this case we can not characterize the whole temporal network, even the rest part

of the temporal network (except disconnected pairs) has a short temporal length.
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2.2.3 Temporal Efficiency

Temporal efficiency is another metric that resolves the problem with disconnected pairs.

In order to resolve those cases it is better to consider inverse value of temporal efficiency.

This means that a smaller value of temporal length results in larger value for the inverse

function. The later clarifies the meaning of the term efficiency.

Definition 4. In the time interval [t1, t2], temporal efficiency between two different nodes

i and j is the inverse value of their temporal distance eij (t1, t2) = 1
dij(t1,t2)

.

Temporal efficiency is a local metric for one particular pair of nodes and it differs from

temporal length because it is ranged from both sides. For temporal efficiency we have

upper and lower bounds. Based on the definition and the fact that dij ≥ 1, temporal

length is a value in the interval [0, 1].

Using temporal efficiencies for pairs of nodes one can define average temporal efficiency

as a metric for a whole graph.

Definition 5. Average temporal efficiency is the averaged sum of temporal efficiencies

over all pairs of nodes in time interval [t1, t2]

EG (t1, t2) =
1

N (N − 1)

∑
i,j;i 6=j

eij (t1, t2)

For the bounds of average temporal efficiency EG (t1, t2) it holds:

Theorem 2. In the time interval [t1, t2], average temporal efficiency is in the range 0 ≤
EG (t1, t2) ≤ 1. Left equality holds if and only if there are no links in the temporal network

and all the nodes are isolated during the whole period [t1, t2] and the right equality holds

if and only if the temporal graph is connected in the first time moment.

Proof. Based on the fact that eij (t1, t2) = 1
dij(t1,t2)

≤ 1 :

EG (t1, t2) =
1

N (N − 1)

∑
i,j;i 6=j

eij (t1, t2)

≤ 1

N (N − 1)

∑
i,j;i 6=j

1

=
1

N (N − 1)
N (N − 1) = 1 (2.1)

Equality holds if and only if eij (t1, t2) = 1 for ∀i, j, i 6= j. This implies dij (t1, t2) = 1. If

there exists a pair of nodes p, q such that there is no path that connects them in the first

moment of temporal network then dpq (t1, t2) > 1 and epq (t1, t2) < 1. The last implies



CHAPTER 2. TEMPORAL METRICS AND ROBUSTNESS 12

EG (t1, t2) < 1. On the other hand, if all the pairs of nodes are connected in the first

moment of temporal network dij (t1, t2) = eij (t1, t2) = 1 and EG (t1, t2) = 1.

Because eij (t1, t2) ≥ 0 for ∀i, j it follows that EG (t1, t2) ≥ 0. The equality holds if and

only if eij (t1, t2) = 0 for ∀i, j, i 6= j or dij (t1, t2) = ∞. If at any moment t′ ∈ (t1, t2]

there exists a link between some nodes p, q then dpq (t1, t2) = t′ − t1 > 0. The last means

that epq (t1, t2) = 1
t′−t1 > 0 is a finite value and EG (t1, t2) > 0. Hence there are no links

in temporal network G (t1, t2) at all the time moments. On the other hand, if we have a

graph without links at all the moments, then EG (t1, t2) = 0.

When a networked system performs in a “normal” regime, i.e. the temporal network

does not sustain structural damage, average temporal efficiency exhibits non-decreasing

behaviour. Let us consider temporal efficiency as a function of moment of measuring t,

assuming a unique starting moment t0. Therefore the efficiency function is EG (t0, t) in

moment t.

Theorem 3. Average temporal efficiency function EG (t0, t) with unique argument t is

non-decreasing.

Proof. The values of the function EG (t0, t) at two different moments ta, tb (ta < tb) are

compared. Let us consider the values of the temporal distances dij (t1, t) for each pair of

nodes i and j. If pair i,j has been connected (directly or via some path) for the first time

at the moment t′ we have

dij (t1, t) =

{
∞, t < t′

t′ − t1, t ≥ t′

Therefore, we have several cases

(i) if ta < tb < t′, dij (t1, ta) = dij (t1, tb) =∞
(ii) if ta < t′ < tb, dij (t1, ta) =∞ and dij (t1, tb) = t′ − t1 <∞ (finite value)

(iii) if t′ < ta < tb, dij (t1, ta) = dij (t1, tb) = t′ − t1 <∞ (finite values)

Hence, we can conclude dij (t1, ta) ≥ dij (t1, tb) or equivalently eij (t1, ta) ≤ eij (t1, tb). The

last leads us to following result for average temporal efficiency

EG (t1, ta) =
1

N (N − 1)

∑
i,j;i 6=j

eij (t1, ta)

≤ 1

N (N − 1)

∑
i,j;i 6=j

eij (t1, tb)

= EG (t1, tb)

Average temporal efficiency is non-decreasing.
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Common behaviour of average temporal efficiency as a time function is depicted in Fig-

ure 2.2. One can notice that temporal efficiency requires some transition period before

achieving a stationary regime. The length of this period is smaller in “well-connected”

temporal networks, where probability of link appearance is higher. Temporal efficiency

is an average measure and characterizes a continuously evolving network in the interval

[t−τ, t]. Therefore, in order to achieve stationary value for temporal efficiency, the length

of the interval τ has to be sufficiently large.

Average temporal efficiency is used as a performance function to define temporal robust-

ness. However, it is worth mentioning that in the case, where temporal network undergo

intelligent attack or random error temporal efficiency drops to a smaller value. This is

crucial for temporal robustness and more details are given in the next section 2.3.
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Figure 2.2: Average temporal efficiency (Erdős-Rényi with N = 100, p = 0.01, τ = 100)

It was mentioned above that not all the nodes in the network are connected from the

first moment. This includes direct connection by some link or indirect connections, where

there is a path between two certain nodes. We say that a pair of nodes in a temporal

network is connected if there is a path at a certain moment between those nodes. This

is closely correlated to temporal length and temporal efficiency, where connected pair

means that we have finite value for temporal length and non-zero value for efficiency. The

number of connected couples is usually compared with the maximum number of couples

in a quotient. The maximum number of couples in the temporal network is
(
N
2

)
= N(N−1)

2
.

2.3 Temporal Network Robustness

A temporal network G (t) can sustain different kinds of damage. Performance is affected

by the damage and the system cannot operate at the same level. For instance, a telecom-

munication provider might be interested in the performance of its network at “peak pe-

riods”, such as New Year’s Eve or national holidays’; similarly an important question for
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a military system is communication abilities of smaller and isolated parts, when main

installations do not participate in some military training. However, the question of eval-

uating the goodness of the system or ability to perform normally should be generalized in

a unique framework. In previous research [BLM+06], different performance metrics have

been chosen for robustness evaluation such as the diameter of the network or size of the

giant component. In this work, temporal efficiency is taken to be a performance metric.

The aim of temporal robustness is to quantify temporal efficiency after sustaining struc-

tural damage. After the evaluation of temporal robustness, further actions to improve

protection or de-centralizing the network architecture should be conducted.

The name structural damage is used as a general term for random errors and intelligent

attacks. The change in temporal efficiency is investigated, after occurrence of structural

damage. Temporal efficiency before and after structural damage are both taken in a

stationary regime for correct robustness evaluation.

Definition 6. Temporal network robustness is the relative change of efficiency value after

a structural damage. If the temporal network after structural damage D is GD (t) and the

efficiency is EGD
temporal robustness is expressed by

RG (D) =
EGD

EG

where EG is the efficiency of temporal network G (t) before the damage.
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Figure 2.3: Efficiency behaviour under error at the moment τ
2

= 150

If structural damage appears, then we have a drop in the temporal efficiency. Common be-

haviour is depicted in Figure 2.3. Based on Definition 6, the efficiency change 4E (G,D)
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contributes in temporal robustness by the following expression

R (G,D) =
EG −4E (G,D)

EG

= 1− 4E (G,D)

EG

The value of sliding window τ may significantly change the perception of temporal ro-

bustness. Underestimating this factor and considering a scenario, where network sustain

structural damage at the moment τ/2 and length of sliding window is insufficiently small

τ can result with value of temporal robustness larger than 1. The reason is the fact that

time τ/2 is not enough for reaching stationarity and smaller value for efficiency is taken

before the damage is sustained. In those cases, efficiency after the damage can achieve

greater value. An example of this is given in Figure 4.2 (Chapter 4).

Accordingly, for correct temporal robustness evaluation, both efficiencies before and after

the damage have to be taken in stationary regime.

2.4 Error and Attacks strategies

Communications and networked systems experience different types of failures. Apart from

the temporal nature of networked system, characterizing of structural damage is also an

important issue. Temporal networks sustain random or non-intentional failures in some of

the entities (nodes) or could be under intelligent and malicious attacks. This can result in

reduced performance, delays in execution of some function or the system might even stop

working. The question of whether the system can undergo random failures or intelligent

and malicious attacks and still run efficiently becomes crucial. Several structural damage

strategies and random error are examined on theoretical models and real data-sets. A

general characteristic of error and attacks strategies is that they both target a certain set

of nodes. Nodes that are targeted are “isolated” from the remaining part of the network,

such that all the links incident to targeted nodes are removed. The number of links that

are chosen in both random errors and intelligent attacks is related to probability of attack.

Higher probability of attack means that more nodes sustain random error or intelligent

attacks.

2.4.1 Random Errors

Random error is a type of network damage, where nodes are removed randomly and not

related to some static or temporal property. Following random error approach, each node

can undergo structural damage with the same probability and this is only related to the

probability of error. Finally, the probability of error defines the number of attacked nodes
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which turns to be the portion of total number of nodes (Nattacked = Perror×N). Probability

of error 0 means that there are no nodes that sustain error and the network performs as

previously. On the other hand, probability of error 1 results with removing of all the

nodes in the network. Temporal efficiency, temporal length and number of connected

couples are all equal to 0 and the new temporal network is completely destroyed and

non-operational.

The set of nodes that are selected is random and in two different random error simulations

the sets of affected nodes are not the same. Therefore, for the final results, including

temporal efficiency, temporal length or temporal robustness evaluation, the simulations

should be repeated several times, followed by averaging. The effects of random errors

and intelligent attacks on theoretical models and real data-sets are discussed separately

in Chapter 3 and 5, respectively.

2.4.2 Intelligent attacks

The causes of many real systems’ damages are usually well planned and targeted attacks.

Intelligent attacks are those strategies which consider some specific temporal node prop-

erty, rather than a to random failures. The knowledge of how well a system copes when

the most important nodes (also named as hubs) are damaged can help in the decision

for future protection. Malicious external/internal activity always targets most influential

entities. Term most important/influential in this context is used in a way that those

are the nodes that have maximum in some feature, such as degree in average, number

of contacts and others. I investigate the effect on both theoretical models and data-sets

under different types of attacks.

In this direction, the choice of attacked nodes will have significant effect on the robustness

value. Our concern is to investigate the effect of worst case scenario, where most influential

nodes are attacked. The worst case scenario, a sorted list of all the nodes by some temporal

property is kept and first Nattacked are attacked. However, fluctuations between worst case

scenario and choices of attacking the same number but other nodes is also important.

Robustness range reports for the fluctuations and interval of values that is expected,

when not the first nodes in the list are removed.

Definition 7. For a particular strategy, the difference in robustness values while attacking

most influential and less influential nodes, when the same numbers of nodes are removed

is called robustness range.

Intelligent attacks strategies are detailed in the remaining part of this section. The com-

mon point of all the strategies is probability of attack Pattack, which determines the number

of nodes that are removed by Nattacked = Pattack ·N .
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Probability of attack is used as an argument of temporal robustness in evaluation. The

question of which nodes are removed is answered by the choice of intelligent attack strate-

gies. The effects on temporal network after a particular intelligent attack or random

error appears on theoretical models and real data-sets are discussed in Chapter 4 and 5,

respectively. In the following part details of particular strategies are given.

Temporal closeness nodes attack

This attacking strategy is closely related to temporal closeness centrality of the nodes.

Closeness centrality is node’s property. It has been initially defined for static graphs.

Definition 8. In a static graph, closeness of a node i is defined as the average shortest

path length to all the remaining nodes in the graph.

This means that one node with a smaller value for closeness centrality is more central

than a node with higher closeness centrality value. Based on the idea of static graphs,

the concept is extended in temporal networks.

Definition 9. In a given time interval [t1, t2], temporal closeness centrality Ci (t1, t2) of

a node i is defined as an average sum of all temporal distances between i and other nodes

in temporal network. Formally,

Ci (t1, t2) =
1

N − 1

∑
j;j 6=i

dji (t1, t2)

In the definition is assumed the unit distance between every two consecutive moments

of the temporal network. This strategy is based on the values of temporal closeness of

the nodes. After I have defined temporal closeness centrality for the nodes in temporal

network, the strategy can be presented.

Temporal closeness nodes attack strategy picks the nodes with the lowest temporal close-

ness centrality. These nodes are considered to be more central than other nodes with

higher closeness centrality, therefore they are more “important” in the temporal network.

According to already calculated temporal closeness for all the nodes we can find temporal

robustness. The sorted list of nodes is formed by the value of temporal closeness and the

first Nattacked are considered for removing, where Nattacked is determined by the probability

of attack (Nattacked = Pattack · N). Finally, we can investigate the network behaviour for

different values of probability of attack.

In addition, by evaluating robustness range the difference in temporal robustness respect

to attacked nodes is determined.
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Average nodes degree attack

Node’s structural property for importance in this strategy is average node’s degree. In

the static graph degree of a node i is defined as the number of nodes directly connected

to node i. However, in temporal networks appearance of a link between pair of nodes is

not constant. For temporal networks we can define average degree node.

Definition 10. In a given time interval [t1, tn] and temporal network {G(tj)} j = 1, 2, . . . , n,

average degree of node i is the averaged sum over all degrees of i in all the static graphs

G(tj)

degG (i; t1, t2) =
1

N − 1

n∑
j=1

degG(tj)
(i)

As in the previous strategy we have a sorted list of average degrees of all the nodes. The

last means that we attack first Nattacked nodes with highest degree. Robustness range is also

evaluated considering deviation of robustness, when less important nodes are attacked.

Nodes number of contacts/updates attack

In the network evolution during the time a node can trigger updates in the other nodes.

A “contact” can initiate change in some temporal distances. An update of the distance

between two nodes i and j is not necessarily caused by a direct link between i and j. For

instance, we say that an update of the distance between nodes i and j also happens, if

a node i is connected with other node k, and k is connected with node j. In general, if

a link is established between two nodes i and j, then it might result with existence of a

path between nodes m and n. This is counted as and update for i and j. The nodes i

and j may be different from m and n. In this way, we can obtain the total number of

updates that each node triggers in other nodes. The nodes that caused highest number

of updates are considered to be most active.

2.5 Implementation issues

In the presented Example 1 for temporal distances, we employ Depth First Search al-

gorithm (DFS). In general other searching algorithm for exploring the neighbours of a

certain node, such as Breath First Search (BFS) could be used. Although there are signif-

icant differences in many aspects, the time complexity of two algorithms is O (|E|+ |V |).
Therefore, time complexity depends on number of nodes and number of links. In the

worst case (|E|=n(n−1)
2

where |V | = n), it is O(n2). Performing DFS for all pair of nodes

will lead us to complexity O (n4) in every single moment. This method works fine for a

smaller networks with a few nodes.
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In the case of large data-sets some other solutions, using the techniques of Lamport

[Lam78] clocks are proposed. In the following part are given the algorithms that are used

for temporal metrics and temporal robustness.

2.5.1 Algorithm for temporal metrics

For each node i, we keep a structure clock[i]. Every clock contains the shortest temporal

distances to all the other nodes. At each time moment, for each link, the clock structures

are updated.

Algorithm 1: Calculating temporal metrics

Input: temporal network G(N(t), E(t))t, where t ∈ T
Output: temporal metrics: Efficiency, Length, % of connected couples

foreach t in T do

foreach edge(node1, node2) in E(t) do

clock[ ][ ] ←− updateClock(node1, node2, clock);

clock[ ][ ] ←− updateClock(node2, node1, clock);

[eff,len,coup]←−calculateTemporalMetrics(t);

Efficiency ←−Efficiency+eff ;

Length ←−Length+len;

ConCouples ←−ConCouples+coup;

Efficiency←−Efficiency/
(|N |

2

)
;

Length←−Length/ConCouples;

ConCouples←−ConCouples/
(|N |

2

)
;

If at a certain time two nodes are in contact with each other, correspondent clocks are

updated. In this way, clocks are updated whenever two nodes are in contact with each

other. The clocks provide real-time information for connectivity, but also offer a possi-

bility for easier observation of particular contribution in efficiency and robustness of each

node. Moreover, random failures and intelligent attacks could easily be monitored in this

algorithm. The algorithm for updating time scheduling clock structure is as follows:

Algorithm 2: updateClock

Input: nodes: i and j; time: t; array: clock[ ][ ]

Output: array: clock[ ][ ]

foreach node in N(t) do

if clock[i, node] > clock[j, node] then

clock[j, node]←− clock[i, node];

clock[j, i]←− t;

From the clock structure, we can calculate correspondent temporal metrics, such as tem-
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poral efficiency, temporal average length and portion of connected couples.

Algorithm 3: calculateTemporalMetrics

Input: time: t; arrays: clock[ ][ ]

Output: temporal metrics in a certain moment: eff, len, coup

eff ←− 0; len ←− 0; coup ←− 0;

foreach i in N(t) do

foreach j in N(t) do

distance←− t−clock[i, j] + 1;

eff ←−eff+1/distance ;

len ←−len+distance ;

coup ←−coup+1 ;

The benefit of this approach is real-time monitoring, in comparison with previously men-

tioned searching algorithms has just been mentioned. In addition, the Lamport clocks

approach is more time efficient. We can see that in each time iteration we have, the

algorithm calculateTemporalMetrics iterates through each pair of nodes and time com-

plexity is O(N2). In Algorithm 1, there is a loop through all the edges in the graph. The

last brings a time complexity O(|E|), which in the worst case (complete graph) is O(N2).

In each iteration Algorithm 2 is performed twice for end-nodes of a certain edge. It it-

erates through all the nodes and compares correspondent clocks with input nodes. This

results in its own complexity O(N). Finally, the complexity for the Algorithm 1 is given

by O(N×|E|+N2). Therefore, this algorithm is more efficient than searching algorithms

with complexity O ((|E|+ |V |) × N2). In the worst case the complexity of Algorithm 1

is O(N3) and again is better than the one of searching (DFS or BFS) with O(N4).

In addition to evaluation that is based on the algorithm, for Erdős-Rényi temporal ran-

dom network, theoretical probabilistic solution is given, which is identical with empirical

evaluations.

2.5.2 Algorithm for temporal network robustness

The algorithm for temporal network robustness extends that of temporal metrics explored

in the previous section. We need to find relative change of temporal efficiency. There

are two approaches for how failures appear and efficiency is calculated. For theoretical

temporal models, such as Erdős-Rényi and Markov model, we calculate temporal efficiency

in stationary regime, before and after the moment of failure, again in stationary regime.

Precisely, random error or intelligent attack appears at the middle (T/2) of the whole

time windows T . The time interval (0, T ] should be long enough, such that stationary

regime for temporal efficiency is achieved in the intervals (0, T
2
] and (T

2
, T ]. For real

temporal network, examined in case studies, we cannot distinguish for stationary regime.

In this case, efficiency is calculated twice for the whole time interval T . Firstly, we
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calculate efficiency without structural damage. Secondly, structural damage (error or

attack) appears at the very first moment before the start of the second evaluation and we

calculate the efficiency for damaged temporal network.

In random error strategy, the nodes that are attacked are chosen randomly. In intelligent

attacks we use a structure for recording nodes importance (average degree node, average

temporal closeness or number of contacts/updates). Nodes with highest importance are

removed. For robustness range the difference in temporal robustness is evaluated, when

most and less important nodes are attacked, respectively.



Chapter 3

Models

Apart from real world networks and extracted data-sets, I use random network models: a

set of artificially generated topologies. However, those models aim to reflect some features,

observed in the real world, such as randomness or preferential attachment to high degree

nodes. Analyzing theoretical models offers a possibility to investigate particular property

on a very effective way, because temporal model are flexible with size of the networks (e.g.

number of nodes), instead of real data.

Network models are not new concepts. They were first studied for the first time by Erdős

and Rényi [ER59], who proposed two popular models: Gp (N) with fixed probability p,

and Gr (N,L) with fixed number of links L. Other examples are Watts and Strogatz

model for small-world graph [WS98]; Barabási-Albert preferential attachment to high

degree nodes [AB02]; power- law and scale-free graphs [FFF99]. Current research mostly

focuses on the static theoretical models, neglecting dynamics and network evolution.

In this chapter, three classes of temporal network models are presented: Erdős-Rényi

model, Markov model and mobility models. Previously defined temporal metrics, includ-

ing temporal efficiency and average temporal length are examined using Erdős-Rényi,

Markov and mobility temporal model for better understanding of the metrics.

3.1 Erdős-Rényi model

In this section the concept of Erdős-Rényi random model is presented, firstly starting

with static approach. Temporal Erdős-Rényi random model is an extension of the static

model.

Definition 11. Erdős-Rényi random graph Gp (N) has N nodes, where a link between

each pair of nodes appears independently with fixed probability p.

The model is simple, the number of the nodes is constant N and determination of node

appearance does not depend on other links or nodes and it is only determined by probabil-

22
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ity p. This model is well studied and most of the features are already known, particularly,

degree distribution, which is the probability that node has a degree equal to k is given

by [ER60, VM06]

Pr [deg (i) = k] =

(
N − 1

k

)
pk (1− p)N−1−k

At this point, we can extend the definition of static to temporal Erdős-Rényi random

graphs.

Definition 12. In time interval [t1, tn], Erdős-Rényi temporal random graph Gp (N, t) is a

sequence of Erdős-Rényi static random graphs Gp (N, ti) taken in the moments ti ∈ [t1, tn],

i = 1, 2, . . . , n.

Based on the independence of previous state, we can conclude similarly for degree distri-

bution function.

Lemma 4. Average degree node in Erdős-Rényi temporal random graph is (N − 1) p.

Proof. Degree distribution of Erdős-Rényi temporal random network is time independent,

hence it is the same as in static graph
(
N−1
k

)
pk (1− p)N−1−k. Based on the expectation

formula for average degree node we have

degt (i) =
N−1∑
k=0

kPr [deg (i) = k, t] =
N−1∑
k=0

k

(
N − 1

k

)
pk (1− p)N−1−k

=
N−1∑
k=1

k
(N − 1) (N − 2)!

k! (N − 1− k)!
p · pk−1 (1− p)N−1−k

= (N − 1) p
N−1∑
k=1

(N − 2)!

(k − 1)! (N − 2− (k − 1))!
pk−1 (1− p)N−2−(k−1)

= (N − 1) p
N−2∑
k=0

(N − 2)!

k! (N − 2− k)!
pk (1− p)N−2−k

= (N − 1) p (p+ 1− p)N−2 = (N − 1) p

Because of the simplicity of Erdős-Rényi model, it can be analyzed by both theoreti-

cal/probabilistic analysis and simulation. The metrics defined in the Chapter 2 are tar-

geted. They consider information spreading and transferring a single message across the

network. The number of connected couples in each moment is determined by probability

that nodes have received a message by moment t. Temporal length and efficiency can

also be obtained based on this result. Let us consider random variable Nt for a number

of nodes that have received a single message. The message is owned by only one node at

the moment t = 0. The following Lemma 5 [SLM+11] holds.
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Lemma 5. The probability density function of a discrete event Nt is determined by the

following recursive formula

Pr [Nt = k] =


0, for k > 1 and t = 0

1, for k = 1 and t = 0∑k
m=1

(
N−m
k−m

)
(1− (1− p)m)

k−m
(1− p)m(N−k) Pr [Nt−1 = m] , o/w

Proof. By definition follows that exactly one node owns the message in the initial moment

and Pr[N0 = 1] = 1. For t > 0, one can consider the formula for total probability or

decomposition

Pr [Nt = k] =
k∑

m=1

Pr [Nt = k|Nt−1 = m] Pr [Nt−1 = m] (3.1)

Let us denote by pm the probability that a single node without a message receives it,

if exactly m other nodes already have the message. The message will not be delivered

only in the case when all m nodes that have the message do not establish a link. The

probability of this event is (1− p)m. If a link is established by at least one node the

message will be received. Therefore, pm = 1− (1− p)m.

Moreover, in order exactly k nodes to receive the message at the moment t, (k −m)

additional nodes have to receive the message if m others already owned it. This event

is not time dependent. We have (N −m) nodes without a message and exactly (k −m)

have to receive it, but (N − k) still not. Therefore, binomial rule holds

Pr [Nt = k|Nt−1 = m] =

(
N −m
k −m

)
pk−mm (1− pm)(N−k)

=

(
N −m
k −m

)
(1− (1− p)m)

k−m
(1− p)m(N−k) (3.2)

Using (3.2) in (3.1), results with

Pr [Nt = k] =
k∑

m=1

(
N −m
k −m

)
(1− (1− p)m)

k−m
(1− p)m(N−k) Pr [Nt−1 = m]

Furthermore, we can obtain the probability that a node receives a message before t time

steps.
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Theorem 6. Probability Rt that a randomly chosen node has received a message before

the moment t is given by the expression

Rt =
1

N − 1

N∑
k=1

(k − 1) Pr [Nt = k]

where Pr[Nt = k] is determined in Lemma 5.

Proof. The probability that k nodes have the message at the moment t is Pr[Nt = k].

Except the source node all the other nodes (k − 1) can be chosen randomly out of (N − 1)

other nodes, by probability k−1
N−1 . Because k can vary in the set {1, 2, . . . , N} the result

follows immediately.

Because Pr[N0 = 1] = 1, Rt = 0. In addition we can find the probability that a node is

reached exactly at time t.

Corollary 1. Probability that temporal distance is equal to t is given by

dt = Pr [l = t] = Rt −Rt−1

Temporal efficiency, temporal length and ratio of connected couples can now be obtained

calculating the expectations E [T−1] , E [T 1] and E [T 0], respectivelly, for random variable

t, using the probability dt.

1. Temporal efficiency

EG = E
[
T−1

]
=

T∑
t=1

t−1 · Pr [l = t]

=
T∑
t=1

1

t
· dt =

T∑
t=1

Rt −Rt−1

t

2. Ratio of connected couples

CG = E
[
T 0
]

=
T∑
t=1

t0 · Pr [l = t] =
T∑
t=1

1 · dt

=
T∑
t=1

(Rt −Rt−1) =
T∑
t=1

Rt −
T∑
t=1

Rt−1

=
T∑
t=1

Rt −
T−1∑
t=0

Rt = RT −R0 = RT
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3. Temporal length

LG =
E [T ]

CG
=

1

CG

T∑
t=1

t1 · Pr [l = t]

=
1

CG

T∑
t=1

t · dt =
1

CG

T∑
t=1

t (Rt −Rt−1)

Thus we have the theoretical derivation for temporal efficiency, temporal length and

portion of connected couples.

Empirical evaluation

The theoretical results for Erdős-Rényi model are confirmed by empirical simulations. The

simulations are in full agreement with the theoretical results and in addition, offer a better

understanding of temporal metrics for different values of probability of link appearance

p. Erdős-Rényi model curves for temporal metrics as a function of different probability

of link appearance p are depicted in Figure 3.1. In particular, temporal length is given

in Figure 3.1a; for very small values of p not all pairs of nodes are connected and by

increasing p, the number of connected pairs increases faster whereas the distance between

already connected pairs decreases. However, after most of the pairs are connected and

temporal length has reached the maximum, average temporal length decreases. Both

temporal efficiency and the ratio of connected couples show increasing behaviour, because

the probability that a particular pair is connected is larger for greater values of p. This is

given in Figures 3.1c and 3.1b.

In Figures 3.1a,3.1b and 3.1c the effect of different number of nodes on temporal metrics

is also considered. The figures compare N = 100 and N = 1000. For portion of con-

nected couples (Figure 3.1b), a higher number of nodes means that more links have to

be established for all the pairs to be connected. Therefore for N = 1000 all pairs will be

connected for larger p than it is for N = 100.

In the case of temporal length (3.1a), small p means that distances between pairs are

long and average temporal length is higher. The connectivity is increased for higher p, it

means that temporal distances are shorter and average temporal length decreases. The

exception of this behaviour are extremely small values of p (for N = 100, p < 10−3). For

these values, temporal length is taken as an average sum only of the connected couples.

The increasing behaviour is because most of the nodes’ pairs become connected by increase

of p; their temporal distance is higher, but finite and they are included in the average sum.

Therefore, they contribute in the increase of the temporal length. After the maximum

is reached, temporal length decreases for higher p. In Figure 3.1a, this is shown only for

N = 100. Higher N means that maximum for temporal length is reached for smaller p.
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On the other hand, temporal efficiency (3.1c) increases faster for smaller values of p

because the number of possible links increases by N2 which means more possibilities for

a new paths. This results in increased efficiency for larger values of N , when p is small.

For larger values of p all pairs of nodes are well-connected and temporal efficiency is not

related to number of nodes N .
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(a) Temporal Length
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(c) Average temporal efficiency
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(d) Average temporal efficiency for different τ

Figure 3.1: Temporal Metrics

The effect of interval length τ is also examined. In Figure 3.1d we can see temporal

efficiency curves for different values of the interval τ as a function of probability p. The

influence of interval τ is not significant, as long as it lasts long enough to establish a path

between all pairs of nodes. This means that influence of temporal efficiency decreases as

τ increases, because all paths that have a length longer than τ are not considered, but

their contribution is not significant for sufficiently large values of τ , because it contributes

to temporal efficiency by the inverse value of temporal distance. Therefore, longer paths

than τ can effectively be omitted. In addition, this will speed up the computation.
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3.2 Markov model

Temporal correlations and time dependencies at previous moments in temporal network

are not provided in Erdős-Rényi model. Markov temporal model provides time depen-

dency on previous state of the link. It is a more general, within which Erdős-Rényi is a

special case. The model is based on Markov process evolution.

Let us consider the states of a certain link. Depending on the presence or absence of a

link we can clarify two possible state: ON and OFF. Now, considering the current state

of a link, it can keep its state or can change it. In this way we can consider a two-state

Markov process. The transitions occur with certain probabilities. More precisely we

denote a transition probability p that a link present at the moment t will not appear at

the moment (t+ 1); and transition probability q that a link will be added at the moment

(t+ 1), if it was not present at the moment t. Therefore, the probability that the link

will remain in the temporal network at the moment (t+ 1) is (1− p) and the probability

that the link will keep absence state at the moment (t+ 1) is (1− q). The transitions are

given on in diagram 3.2.

ON OFF

p

q

1-p

1-q

Figure 3.2: Markov model transition states

According to the simple model an the formula for total probability we can calculate the

probability for both states ON and OFF

Pr [ON ] = Pr [ON |OFF ] Pr [OFF ] + Pr [ON |ON ] Pr [ON ]

Pr [OFF ] = Pr [OFF |OFF ] Pr [OFF ] + Pr [OFF |ON ] Pr [ON ]

Pr [ON ] + Pr [OFF ] = 1

Switching to probabilities p, q, (1− p) , (1− q)

Pr [ON ] = q Pr [OFF ] + (1− p) Pr [ON ]

Pr [OFF ] = (1− q) Pr [OFF ] + pPr [ON ]

Pr [ON ] + Pr [OFF ] = 1
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This gives us

Pr [ON ] =
q

p+ q

Pr [OFF ] =
p

p+ q

It is worth mentioning that p + q 6= 1 in general, which gives time correlation with

previous state. In a special case where p+ q = 1 we have q = Pr [ON ] = Pr [ON |OFF ] =

Pr [ON |ON ] and p = Pr [OFF ] = Pr [OFF |OFF ] = Pr [OFF |ON ]. Hence, there is no

time correlation and we have a fixed probability for link appearance q and absence (1− q)
which corresponds exactly to Erdős-Rényi temporal network.

Having two probabilities for link transition allows us to analyze efficiency from different

perspectives. In the first case, shown in Figure 3.3a, for a several fixed values of probability

q, the curves for efficiency are given as a function of probability p. We have decreasing

functions because higher probability p means more intensive transition for link presence

to absence. The common point for analyzing all the temporal models is probability of link

appearance PON and their comparison is made in Figure 3.3b. Particularly, in the figure

for Markovian model is given the curve for q = 10−3 and different values of PON = q
p+q

.

Temporal efficiency curves for the Markov model show similar behaviour to that of Erdős-

Renyi, but increases more slowly for smaller values of probability of link appearance PON.
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(a) Markov temporal model (q = 10−3)
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(b) Different temporal models

Figure 3.3: Average temporal efficiency for temporal models

The results for temporal robustness and robustness range are discussed in Chapter 4.
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3.3 Mobility models

This is a group of theoretical models that aims to simulate the behaviour of mobility.

Like the Markov temporal model the mobility model preserves time correlation with the

previous state. Unlike the Markov temporal model, in this model the probabilities for

changing the state from link presence to absence and vice versa are not constant. The

model is as follows [MGBM10]:

Let us imagine a grid with dimensions 1000 × 1000, such that 100 take one coordinate.

The nodes are not static: they move from one coordinate to another. Another variable,

denoted as communication range r, determines the probability of link appearance PON.

If the Euclidean distance between two nodes is shorter than r at this moment we have a

link between those two nodes in the temporal graph. In this way temporal networks are

defined, considering all time moments at which nodes move. However, we can distinguish

some details in mobility models: only random movements exist without the preference of

some nodes or some nodes being treated as more central.

Two classes of mobility models are considered. A node in Random Waypoint Model

(RWP) uniformly picks random location and moves towards this location by speed that is

randomly and uniformly chosen in the interval [5 mph, 40 mph]. After a node has reached

picked destination, it first waits for a randomly chosen number of moments less than 120

seconds and the procedure starts again by picking a destination and appropriate speed.

The benefit of the model is that it provides homogeneous spatial mixing among nodes,

but randomness may not express all the aspects of mobility behaviour.

In Random Waypoint Group Model (RWPG) there are two types of nodes: group leaders

and followers. Denoting the number of group leaders by M , (N −M) followers are as-

signed to a group with a unique leader. The size of each group is N
M

nodes in total, with 1

leader and
(
N
M
− 1
)

followers. The movement rule here is that only the leader of a group

picks a destination, as in the RWP model. Followers in a group just follow their leader,

such each keeping a distance shorter than a given span (e.g. 100 meters).

Figure 3.3b shows a comparison of the RWP model and RWPG with 5 leaders. One can

see that temporal efficiencies for both classes of mobility model increase more slowly than

Erdős-Rényi, especially the curve for the RWPG model. This is because there are fewer

options for temporal paths and most of them traverse through fewer nodes, particularly

RWPG “leaders” nodes.

Temporal robustness and robustness range are both considered on several RWP and

RWPG models under error and different attack strategies.



Chapter 4

Evaluation of Temporal Robustness

The evaluation of temporal robustness on theoretical models is presented in this chap-

ter. I investigate the effects of temporal network robustness as a function of probability

of error/attack for different strategies. Random failures and three attacking strategies:

temporal closeness nodes attack, average nodes degree attack and nodes number of con-

tacts/updates attack are considered on Erdős-Rényi, Markov and different mobility models

for temporal robustness evaluation.

In addition, for each of the strategies, robustness range is also examined as a measure of

temporal robustness deviation, when less important nodes in the network are attacked,

rather than most important. However, in Erdős-Rényi and Markov temporal models the

nodes have similar structural properties (e.g. average degree or temporal closeness), which

determines their importance. In these cases, this is the reason why the choice of removed

nodes does not influence to robustness value and the robustness range is 0. Contrarily,

for mobility models we have difference in node’s importance, which contributes temporal

robustness to decrease faster for intelligent attacks than random errors.

4.1 Erdős-Rényi model

Figure 4.1a gives the values of temporal robustness for Erdős-Rényi temporal network

with N = 100 nodes and probability of link appearance p = 10−3, when it is attacked

by different intelligent attacks and random errors. In all the attacking strategies most

influential nodes are removed. It can be seen that the value of temporal robustness is the

same and irrelevant to the choice of strategy. In addition, identical value for robustness

is recorded for all the values of probability of link appearance p. Accordingly, temporal

robustness curve is only plotted for one particular p.

Moreover, for each strategy the effect of intelligent attacks and random errors is considered

for different Erdős-Rényi temporal networks. This behaviour for average nodes degree

31
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attack strategy is given in Figure 4.1b. Similarly, we have the same robustness value for

different Erdős-Rényi temporal networks.
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(b) Average nodes degree attack strategy

Figure 4.1: Erdős Renyi temporal network

It is worth mentioning that previous considerations for temporal robustness are taken in

stationary regime for temporal efficiency. In the case where T is small temporal efficiency

does not reach stationary value in all the cases. In particular, Erdős-Rényi temporal

network with smaller values of p requires larger T to establish the efficiency’s stationary

regime. In non-stationary cases, temporal efficiency after attack/error can be larger than

efficiency before. Therefore temporal robustness is greater than one. This as a weakness

of temporal robustness and an example is shown in Figure 4.2 for T = 20.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Perror/attack

T
em

po
ra

l R
ob

us
tn

es
s

 

 
Random Errors
Closeness
Final highest degree
Average highest degree
No. contacts/updates

(a) Different strategies (N = 100, p = 10−3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Pattack

T
em

po
ra

l R
ob

us
tn

es
s

 

 

p = 10−3

p = 10−2

p = 10−1

(b) Average nodes degree attack strategy

Figure 4.2: Erdős-Rényi temporal network (small T effect)

The last means that temporal robustness should be evaluated in cases where efficiency

before and after error/attack are both in stationary regime.
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4.2 Markov model

Markov temporal model shows similar features to these of the Erdős-Rényi temporal

model. In the evaluation are considered Markov temporal models that differs in prob-

ability of link presence PON = q
p+q

for enough long interval T for reaching efficiency’s

stationary regime. This is shown in Figure 4.3b for strategy average nodes degree attack.

We have the same temporal robustness when the model suffers different attacks or error

strategies (Figure 4.3a). By this reasoning only one strategy is presented.
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Figure 4.3: Markov temporal network

Contrarily, when a small T is chosen, the efficiency before and/or after cannot achieve

stationary values. This results in robustness greater than 1 in some cases and difference

between strategies for a particular model (Figure 4.4).
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Figure 4.4: Erdős Renyi temporal network (small T effect)
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4.3 Mobility models

I evaluate temporal robustness for two classes of mobility models. Random Waypoint

Model (RWP) and Random Waypoint Group Model (RWPG) with 5 leaders. Descriptions

of both models are given in Chapter 3 (section 3.3). In both temporal model classes there

are 100 nodes in total. For both classes, different probabilities of link appearance are

considered PON = 10−4, 10−3, 10−2, 10−1.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pattack

T
em

po
ra

l R
ob

us
tn

es
s

 

 

PON = 10−4

PON = 10−3

PON = 10−2

PON = 10−1

(b) Average nodes degree attack
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(c) Nodes number of contacts/updates attack
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(d) Random error

Figure 4.5: RWP mobility models

In Figure 4.5 are given 4 figures for a random error and 3 intelligent attack strategies:

temporal closeness nodes attack, average nodes degree attack and nodes number of con-

tacts/updates attack. We can see that for all the strategies the model is less affected in

well-connected cases (higher PON). Moreover, for one particular model intelligent attack

strategies similarly affect the model. This is shown in Figure 4.6. Temporal robustness

for random failures is the same for different RWP mobility models and is less effective

than intelligent attacks.
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(b) PON = 10−3
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(c) PON = 10−2
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(d) PON = 10−1

Figure 4.6: RWP mobility models

The difference for temporal robustness by the choice of nodes can be evaluated by ro-

bustness range. In the previous plots the robustness is evaluated when most important

nodes are removed. The importance of a node is determined by particular attacking

strategy: temporal closeness nodes attack, average nodes degree attack, nodes number of

contacts/updates attack. Figure 4.7 expresses the robustness range for different attacking

strategies. Robustness range is the area between the temporal robustness curve where

less important nodes are attacked and the one when most important are attacked. For

smaller values of PON we have larger robustness range area, which indicates that choice

of attacked nodes significantly influences on the temporal robustness value. Contrarily,

for larger values of PON, the robustness range area is small, which means that temporal

robustness can be determined exactly, irrelevant to the choice of attacked nodes.

Temporal robustness for RWPG model shows similar behaviour for different probability

of link appearance PON. However, temporal robustness decreases faster than the one

of RWP model. Figure 4.8 shows four figures for each attacking strategies and random
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(a) Temporal closeness nodes (b) Average nodes degree (c) Nodes no. of contacts/updates

Figure 4.7: RWP robustness range

errors. In each one, temporal robustness for different PON is considered.
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(b) Average nodes degree attack
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(c) Nodes number of contacts/updates attack
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(d) Random error

Figure 4.8: RWPG mobility models

In Figure 4.9 we can see that for a fixed PON the choice of intelligent attack strategy is

irrelevant and all are more effective than random errors, particularly for smaller PON. In
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well-connected RWPG (PON = 0.1), temporal robustness values for intelligent attacks and

random failures are levelled.
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(a) PON = 10−4
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(b) PON = 10−3
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(c) PON = 10−2
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(d) PON = 10−1

Figure 4.9: RWPG mobility models

Because of the importance of nodes in the RWPG model, the choice of attacked nodes

plays a crucial role and robustness range is larger than RWP models. Robustness ranges

for different intelligent attacks are shown in Figure 4.10.

4.4 Discussion

Erdős-Rényi temporal network as a structure does not contain predominant nodes or

sub-graphs. This is a corollary of the fact stated in Lemma 4, that all the nodes are

statistically identical and the average degree of a node is fixed value (N − 1) p for all the

nodes. The last means that in average nodes degree attack strategy the choice of the

nodes is irrelevant, we have a fixed value for robustness for different choice of nodes and
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(a) Temporal closeness nodes (b) Average nodes degree (c) Nodes no. of contacts/updates

Figure 4.10: RWPG robustness range

robustness range is zero. For the other attacks strategies, we have that temporal closeness

and number of contacts/updates are similar for all nodes, which also implies irrelevance

of chosen nodes for the same probability of attack. Therefore, the robustness curve is the

same for all the strategies and robustness range is 0.

The Markov temporal model differs from Erdős-Rényi because we have transitional prob-

abilities from link appearance to absence. As it is shown in section 3.1, Chapter 3, for

different values of p we have different temporal efficiency. However, relative changes of

temporal efficiency, after temporal network sustains random error or intelligent attack are

the same, which results in the same value of temporal robustness.

In Figure 4.11 are given the histograms for average degree, temporal closeness and number

of contact updates in the Markov temporal network. We can see that temporal properties

for most of the nodes are similar. This is the main reason for irrelevance of nodes choice

and same curve for all random error and attacks strategies. About more than 60% of the

nodes have similar values of temporal properties and the remaining have closer values to

this.
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Figure 4.11: Histogram for nodes temporal properties (Markov model)

In both Erdős-Rényi temporal network and Markov models we calculate the robustness for

small T , when stationary regime for efficiency is not achieved. For temporal models with
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lower connectivity (small p or PON) a longer interval T is required to achieve stationary

regime and all pairs to be connected. Otherwise temporal robustness cannot be measured

properly and we have value greater than 1 for temporal robustness.

For a fixed model in both classes (RWP and RWPG), when most important nodes are

attacked, the robustness is similar for different attacking strategy, because similar nodes

are picked. In the other words similar nodes are most important by all the attacking

strategies. Mobility models with smaller PON are more affected by all the strategies,

because some crucial temporal distances are more likely to be removed than for larger

PON.

The difference between mobility models has an effect in robustness range because leaders in

the RWPG model are important hubs and their removal influences on temporal robustness

more than on the RWP mobility model, where there are no leading nodes. This results

in larger robustness range area for the RWPG mobility model.



Chapter 5

Case studies

This chapter presents two case studies on temporal robustness. Considered data is taken

from two real systems. The first case study uses the data collected from taxi cabs that have

been moving intensively through whole area around San Francisco, USA. The second case

study works with the data gathered from mobile device interactions between participants

on scientific conference during the 4 days period. Results for random error and intelligent

attacks strategies on both real data sets are given in the section 5.3

5.1 Cab-spotting traces

This case study uses the data from Cab-spotting system for collecting information from

taxi movements in San Francisco area. The aim of this project that lasted for 2 years is

gathering data about life in the city. All the taxis participating in this project are equipped

with GPS sensor devices that periodically send the information for the new location and

time stamp to one centralized place. For the case, the data was collected from 24 hours

monitoring on 21 May 2008 in a certain area of 20 km × 20 km around San Francisco.

Based on the record, one can reconstruct trajectories of all the taxis. Temporal network

is derived on a similar way like mobility models, choosing a communication range of

200 m, which is a common distance for WiFi taxi devices [PSDG09]. Time granularity for

sampling is 1 second. In this manner, communication is recorded in a discrete moments.

The temporal network is reconstructed by interpolating data in all the moments during

the day. It is reported participation of 488 nodes and temporal network consists of about

86,400 graphs. On average duration of a contact lasts for 2 minutes and inter-contact

time is 2 hours 30 minutes [SLM+11]. In the following text, the data set will be called

shortly Cab-spotting.

40
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5.2 INFOCOM traces

The data were collected over 4 days between April 24th and April 27th at the IEEE

INFOCOM 2006 conference in Barcelona, Spain. Participants in the experiment were

70 students and researchers who were attending to student workshop. The aim of the

experiment was to investigate communication between participants on a particular event.

All the participants were equipped with mobile communication devices iMotes [SGC+09],

presented in the Appendix A. In total 78 iMotes mobile devices were used by participants

and additional 20 stationary iMotes were deployed. Stationary iMotes devices have more

powerful battery and extended radio range. The wireless range of mobile iMotes is about

30 meters and that of stationary devices is about 100 meters [SGC+09].

During the 4 days experiment participants were asked to bring the devices which recorded

a communication in the range by both mobile and stationary devices. However, the inten-

sity of communication is not the same all the time during the conference. In the overnight

periods during the conference’s days we have less intensive communication. During peak

periods, before and after meetings and discussion sessions, more intensive communica-

tion was recorded. At the temporal network, a link appears at a certain time, if there

was existence of communication between two entities (participant or stationary device).

The time granularity of temporal network is 2 minutes. By the reason of simplicity, the

data-set from this case-study is named as INFOCOM.

5.3 Results and discussion

Temporal robustness and robustness range are evaluated for two considered data-sets

Cab-spotting and INFOCOM. Figure 5.1 gives four figures for the INFOCOM data-set.

Particularly, in Figure 5.1a are plotted robustness curves for 3 intelligent attacks and

random error strategies. In the remaining 3 figures ( 5.1b, 5.1c and 5.1d) robustness range

for each particular attacking strategy is given that provides information about robustness

deviation by the choice of removed nodes. Temporal robustness can have some value in

the robustness range area because it is ranged by robustness curves when less important

and most important nodes are attacked, respectively.

Similar analysis is conducted on the Cab-spotting data set. Corresponding temporal

robustness curves for different strategies are given in Figure 5.2a and robustness range

for temporal closeness nodes attack, average nodes degree attack and nodes number of

contacts/updates attack in Figures 5.2b, 5.2c and 5.2d, respectively.

Temporal robustness for different temporal networks under average nodes degree attack

strategy is given in Figure 5.3. It presents a comparison between Cab-Spotting, INFO-

COM data-sets and theoretical models: Erdős-Rényi, Markov, RWP and RWPG mobility.
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(c) Average nodes degree range (d) Nodes number of contacts/updates range

Figure 5.1: INFOCOM

Temporal robustnesses for Erdős-Rényi and Markov models are similar and are shown as

a unique curve. Because of the difference in temporal robustness for mobility models two

curves are given for low and well-connected models (PON = 10−4, 10−2).

The analysis of the real data-sets shows that different attacking strategies equally affected

temporal network. The main reason is that the same nodes are most important according

to all three attacking strategies. Because of the presence of more important nodes, the

curves for intelligent attacks decrease faster than random error strategy. The robustness

range area is similar for all the strategies, which again shows that same nodes are most

important by different intelligent attacks.

Comparison of all the real data and temporal network models shows that the effect of at-

tack is most significant in mobility models especially for lower PON. Temporal robustness

also decreases faster in real networks than “balanced” models. As it is shown on His-

tograms 5.4 and 5.5, nodes in real networks have different temporal properties: average

degree, temporal closeness, number of contacts/updates, unlike on the Markov temporal
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Figure 5.2: Cab-spotting
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Figure 5.3: Average nodes degree attack strategy

model (Histogram 4.11). Some nodes are more dominant than others in both Cab-spotting

and INFOCOM temporal networks. Moreover, the goups of nodes with similar values of
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temporal properties is less than 30% of all the nodes in all 3 strategies. Therefore real

networks are more affected by intelligent attacks than balanced Erdős-Rényi and Markov

model.
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Figure 5.4: Cab-spotting nodes temporal properties
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Figure 5.5: INFOCOM nodes temporal properties

Having a significant robustness range area and sensitivity of intelligent attacks, real tem-

poral networks can be related with mobility models. More precisely, comparing robustness

range areas, both INFOCOM and Cab-spotting networks are similar with RWP mobility

model for smaller PON. This points us presence of pre-dominant entities and important

hubs. For INFOCOM network the reason may be found in the fact that some scientist is

widely recognized and the other tended to communicate with them. On the other hand,

for Cab-spotting network some of the taxi cabs used to move in more central places, which

resulted that their wireless communication with the other taxi cabs were more intensive.

Although, there are important entities in both real networks, they cannot be characterized

as “leaders” that are followed by group of other nodes as it is a case with RWPG models,

where temporal robustness is most sensitive on “leaders” removal and robustness range

area is the widest.

In conclusion, temporal network robustness is more sensitive in the cases of real temporal

networks and mobility models, because of the presence of dominant and important nodes.
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Thus, in future plans for more robust system/application design it makes sense to follow

2 possible approaches. The first proposes additional protection for important nodes and

the second, suggests leveling the importance of all the entities (e.g. “P2P like” instead of

centralized architecture).



Chapter 6

Conclusion and Future Research

6.1 Conclusion

This dissertation investigates temporal network robustness for different time-varying net-

works under several attacking strategies and random error. The evaluation of robustness

unites the benefits of temporal network analysis from one side and robustness of network

from the other.

Temporal efficiency is chosen as a performance metric as it expresses dynamic of temporal

network very effectively. Secondly, the concept of robustness for static networks is ex-

tended to temporal networks. Accordingly, I propose a framework for temporal network

robustness that measures the temporal robustness under those conditions providing us

with more relevant analysis for system dynamic.

In the evaluation of temporal network robustness, temporal efficiency at two crucial mo-

ments is measured. The first moment considers temporal efficiency before a group of

nodes is removed and the second after that, both taken in stationary regime. However,

the choice of nodes that are removed can be crucial in temporal network robustness. For

this reason, apart form random error, several attacking strategies are employed in the

analysis: temporal closeness nodes attack, average nodes degree attack and nodes num-

ber of contacts/updates attack. In all the strategies the nodes are sorted according to

importance, removed nodes are most important ones and the number is determined by

probability of attack.

In order to understand the deviation when other nodes are removed, the robustness range

is determined for all the models and real temporal networks, which is a difference be-

tween temporal robustness when less important and most important nodes are removed,

respectively. In general, temporal robustness can have a values in this range.

I use several theoretical temporal network models and temporal networks from real data.

The analysis considers Erdős-Rényi, Markov temporal networks and two classes of mobility

46
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model. Temporal robustness is also evaluated on two case studies: the first one uses the

data from mobile devices interactions between scientists on a conference and second one,

interactions between taxi cabs wireless devices in San Francisco, USA during one day.

The results for different attacking strategies show similar effect on temporal robustness on

all the used data. The reason for this is the fact that almost the same nodes are recognized

as important in all the attacking strategies. In Erdős-Rényi and Markovian models, for

both low and highly connected cases, the robustness have similar values. It is shown,

theoretically (Erdős-Rényi) and by simulations (Markov) that nodes have similar values

for average degree, temporal closeness and number of contacts/updates. For these reasons,

we can classify these models as “balanced”. In those temporal networks, robustness will

be equally affected if other nodes are attacked.

On the other hand, for real data and mobility models, especially for RWPG, temporal ro-

bustness is more sensitive to intelligent attacks than random errors, because those models

contain dominant nodes. RWPG even by definition consists of leading nodes that are cen-

tral for particular group of nodes. Similar behaviour is shown for data from case studies.

The last points out that those leading entities in the network, which failure affects further

performance, should have better protection. In some cases, additional protection is more

expensive and causes additional delays and reduced performance, therefore making the

nodes equally important and the architecture decentralized is a better option.

The results suggest two possible applications for more robust design. In a centralized

networked systems or software application, it is worth increasing the security level and

introduce additional protection, because of their contribution for general performance.

Additional protection may be an expensive solution and some processes in the system can

be delayed. In these cases some decentralized approach works better. For instance, the

system consists of several mini data-centers which keep redundant information is more

robust than one huge data center, even if it has redundant data copies and additional

protection. Another network architecture design solution is modification of peer-to-peer

(P2P) system, where few nodes are more important than others is more robust, rather

than a client-server approach.

6.2 Future Research

The results of this dissertation provide a good base and strong foundation for further

research. There are two general directions for future work. The first continues in the

framework of complex network analysis aware of temporal properties of networks. The

second may follow a more practical line, considering the conclusions for better protection

and more robust design of important nodes.

Investigating the preferential attachment behaviour [AB02], tendency for connecting to

important nodes may show some interesting results for temporal robustness and range.
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Moreover, considering another theoretical models like small-world graph or power law

graphs may be another interesting field for future research. In the same direction, the

effect of community detection over time and the effect of clustering approaches after

temporal network sustains structural damage is an area for further research. Analysis

will include clustering coefficient and modularity.

The second proposal considers design and real implementation of networked decentralized

or P2P modified system with just a few pre-dominant nodes. This system will be evaluated

under simulated failures and compared with typical data-center.
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Appendix A

iMote wireless device

iMote wireless device used for collecting INFOCOM data is shown in Figure A.1. The width of

the device is only 2.5cm.

(a) without packaging (b) with packaging

Figure A.1: iMote device
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