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ARTICLE INFO ABSTRACT

Keywords: Network Function Virtualization (NFV) is emerging as an attractive solution, which can transform complex
Net"‘fork function virtualization network functions from the dedicated hardware implementations into software instances running in a virtualized
Routmg- environment. In NFV, the requested service is implemented by a sequence of Virtual Network Functions (VNF)
Stochastic . . . . . .
Dela that can run on generic servers by leveraging the virtualization technology. These VNFs are placed in a predefined
Ban ;’wi dth order, which is also known as the Service Function Chaining (SFC). While most of the existing work on traffic

routing in NFV networks assume deterministic link delay and bandwidth, the real-life network usually behaves
in a stochastic manner, due to e.g., inaccurate data, expired exchanged information, insufficient estimation
to the network. Motivated by this, we consider the stochastic NFV networks, where the link bandwidth and
delay are assumed to be random variables and their cumulative distribution functions are known. We first study
how to calculate the delay and bandwidth value in an SFC such that their realizing probabilities are satisfied.
Subsequently, we formally define the traffic routing problem in stochastic NFV networks and prove it is NP-
hard. We present an exact solution and a tunable heuristic to solve this problem. The proposed heuristic is
a sampling-based algorithm, and it leverages the Tunable Accuracy Multiple Constraints Routing Algorithm
(TAMCRA) to find a multi-constraint path for each adjacent VNF pair. It dynamically adjusts the link weights
as well as delay and bandwidth realizing probability constraint after finding the path for each VNF pair so that
the cumulated probabilities will not violate the specified values. Finally, we evaluate the performance of the
proposed algorithms via extensive simulations.

1. Introduction

Nowadays, data communication networks have been witnessing
exponential growth in users’ data traffic. According to the forecast
from Cisco (Cisco Visual Networking Index, 2018), the global IP traf-
fic will reach 3.3 ZB by 2021, with a Compound Annual Growth Rate
(CAGR) of 24 percent since 2016. In the traditional network services
provisioning paradigm, network functions (e.g., firewall or web proxy)
which are also called middleboxes are usually implemented by dedi-
cated hardware appliances. Needless to say, it is costly to deploy these
hardware middleboxes due to their high design and production cost and
also these middleboxes need to be configured and managed manually,
which further increases the costs of service providers. Therefore, the
traditional network service paradigm fails to keep pace with satisfy-
ing the ever-increasing users’ QoS requirements from the perspective of
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CAPital EXpenditures (CAPEX) and OPerational EXpenditures (OPEX),
which poses a big challenge to network service providers.

Network Function Virtualization (NFV) which is first proposed by
European Telecommunications Standards Institute (ETSI) (ETSI, 2013)
in 2012 has emerged as an appealing solution, since it offers replace-
ment of dedicated hardware implementations with software instances
running in a virtualized environment. In NFV, the requested service is
implemented by a sequence of Virtual Network Functions (VNF) that
can run on generic servers by leveraging the virtualization technology.
Service Function Chaining (SFC) is therefore defined as a chain-ordered
set of placed VNFs that handles the traffic of the delivery and control
of a specific application (Medhat et al., 2017). NFV is therefore able to
allocate network resources in a more scalable and elastic manner, offer
a more efficient and agile management and operation mechanism for
network functions, leading to a large reduction of the overall costs.

E-mail addresses: S.Yang@bit.edu.cn (S. Yang), fli@bit.edu.cn (F. Li), sttrajan@microsoft.com (S. Trajanovski), Fu@cs.uni-goettingen.de (X. Fu).
1 As we will show later, the traffic routing problem alone in (stochastic) NFV networks is already NP-hard, hence jointly considering traffic routing and VNF
placement will be more difficult to solve. We therefore only consider the traffic routing problem in stochastic NFV networks in this paper.
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Traffic routing (and VNF placement)! in NFV networks is a funda-
mental issue to construct an SFC without violating the QoS require-
ment, and it has been extensively studied in the recent works (Herrera
and Botero, 2016; Yi et al., 2018; Hantouti et al., 2018) where the link
weight is assumed to be deterministic. However, in many real-life net-
works (e.g., data communication networks, wireless sensor networks
(Krishnan et al., 2018)), the link weight such as bandwidth and delay
usually varies and is uncertain (Yang and Kuipers, 2014). These uncer-
tainties (Guerin and Orda, 1999; Korkmaz and Krunz, 2003) usually
arise from inaccurate data, expired exchanged information or insuffi-
cient estimation to the network. For example, especially in large net-
works, it is difficult to obtain an accurate view on the link character-
istics like bandwidth utilization or latency, because their dynamics are
usually of the same order as the time it would take to distribute infor-
mation on the link state throughout the network (Yang and Kuipers,
2014). Similarly in Software Defined Networks (SDN) (Nunes et al.,
2014), the controller collects network statistics periodically to achieve
the link conditions in the network. The dynamics such as configuration
changes (Reitblatt et al., 2012) may lead to inaccurate/stochastic net-
work state information in terms of delay or bandwidth. Another exam-
ple is that the delay and available bandwidth are affected by diurnal
patterns, interference in wireless networks (Krishnan et al., 2019), or
by failure and maintenance events.

Based on the above concerns, we assume the link delay and band-
width are random variables (stochastic) and assume their cumulative
distribution functions (CDF) are known, which can be easily achieved
based on historical data. Suppose that the VNFs are placed in the net-
work, we investigate how to construct an SFC by finding the appropriate
path for each requested VNF pair. To the best of our knowledge, this
work is the first to address the traffic routing problem in stochastic NFV
networks. Our key contributions are as follows:

e We mathematically model the stochastic link weight in terms of
delay and bandwidth. More specifically, given that the link delay
and bandwidth follow a known distribution, we show how to cal-
culate the delay and bandwidth in an SFC such that their realizing
probabilities satisfy the required values.

We define the Traffic Routing problem in Stochastic NFV Networks

and prove it to be NP-hard. We further formulate this problem as an

exact optimization solution.

e We devise a tunable heuristic that first discretizes the network by
k-samplings, and then dynamically applies Tunable Accuracy Mul-
tiple Constraints Routing Algorithm (TAMCRA) to find the multi-
constraint path for each adjacent VNF pair.

The remainder of this paper is organized as follows. Section 2
presents the related work. Section 3 introduces stochastic link weight
model. Section 4 defines the Traffic Routing in Stochastic NFV Net-
works (TRSN) problem and presents an exact solution to formulate it.
In Section 5, we propose a tunable sampling-based heuristic to solve
the TRSN problem. Section 6 provides the simulation results and we
conclude in Section 7.

2. Related work

In this section, we will divide and present the related work about
traffic routing and VNF placement in both deterministic and stochastic
NFV networks. In deterministic NFV networks, we will further present
the related work on three categories, namely, (1) traffic routing in
deterministic NFV networks, where VNFs are assumed to be placed on
networks, (2) VNF Placement in Deterministic NFV Networks, where
the path between each node pair is known, (3) (jointly) VNF Placement
and Routing in Deterministic NFV Networks.
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2.1. Traffic routing and VNF Placement in Deterministic NFV networks

A comprehensive survey about NFV can be found in (Yi et al., 2018;
Bhamare et al., 2016; Mijumbi et al., 2016). (Herrera and Botero, 2016;
MIRJALILY, 2018) provides a survey about resource allocation in NFV
networks and (Hantouti et al., 2018) presents a survey about traffic
steering in NFV networks. Laghrissi and Taleb (2019) present a survey
of Virtual Machine placement and VNF placement.

2.1.1. Traffic routing in deterministic NFV networks

Suppose that the VNFs are placed in networks, the traffic routing
problem in NFV networks refers to find a path among each requested
VNF pair. This problem can be proved to be NP-hard by a reduction
to the NP-hard Hamiltonian path problem (Garey and Johnson, 1979).
Therefore, only approximation algorithm or heuristic can exist to solve
it in polynomial time. Dwaraki and Wolf (2016) devise a layered-graph
based heuristic to solve the delay-aware traffic routing problem in NFV
networks. Wang et al. (2017) propose a distributed Alternating Direc-
tion Method of Multipliers (ADMM) algorithm to solve the traffic rout-
ing problem in NFV networks for multiple requests. The proposed algo-
rithm in (Wang et al., 2017) is proved to have a fixed coverage rate. Yu
et al. (2017) propose a Fully-Polynomial Time Approximation Scheme
(FPTAS)? to find the multipath between each VNF pair such that during
an arbitrary single service failure, at most a portion of bandwidth is lost
for each request. Gao and Rouskas (2019) present an online competi-
tive traffic routing algorithm based on the Shortest Path Tour problem
to minimize the congestion.

2.1.2. VNF Placement in Deterministic NFV networks

When the path between each node pair is known/fixed, Ma et al.
(2017) study the VNF placement problem to minimize the maximum
link load in three cases: (1) when there is no dependency between VNFs,
(2) there is a total dependency order on the VNF set, and (3) there exists
dependency among a subset of VNFs. They propose a polynomial-time
algorithm for case (1), and prove that cases (2) and (3) are NP-hard.
To solve them, a dynamic programming and an efficient heuristic are
proposed to solve (2) and (3), respectively. Pham et al. (2017) propose
a sampling-based Markov approximation algorithm to jointly minimize
the operational and network traffic costs for the VNF placement prob-
lem. Kuo et al. (2016) relax/approximate the VNF placement problem
based on the intuition that placing VNFs on a shorter path consumes less
link bandwidth, but might also reduce VM reuse opportunities; reusing
more VMs might lead to a longer path, and so it consumes more link
bandwidth. Tomassilli et al. (Tomassillik et al., 2018) study the VNF
placement problem with the aim of minimizing total costs for servic-
ing a set of requests. By transforming this problem into a hitting-cut
problem, Tomassilli et al. (Tomassillik et al., 2018) propose two log-
arithmic factor approximation algorithms. The first algorithm is based
on LP rounding and the second one is a greedy algorithm. Marotta et
al. (2017) devise a three-phase heuristic for the robust power-aware
VNF placement problem by considering the uncertainty of the demand.
Song et al. (Song et al., ) study the VNF placement problem in 5G edge
networks by considering the user’s mobility. They (Song et al., ) first
propose a user grouping model based on users’ context geographical
information and then define (and compute the optimum number of the)
clusters to minimize the end-to-end delay of network services. Subse-
quently, a graph partitioning algorithm assigning VNFs to clusters in the
edge network is presented to minimize user movement between clusters
and optimize the data rate that users lose due to VNF migration.

2 An FPTAS has a time complexity that is polynomial in both the problem
size and % and produces a solution that is within a factor (1 + €) of the optimal
solution (or (1 — ¢) for maximization problems).
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2.1.3. VNF Placement and Routing in Deterministic NFV networks

As we see above, only consider traffic routing or VNF placement
in NFV networks has already been NP-hard to solve, therefore jointly
considering the VNF placement and routing in NFV networks will make
this problem ever harder. Ma et al. (2017) prove that jointly consider-
ing the VNF placement and routing problem is NP-hard even under the
non-ordered VNF dependence case by a reduction to the NP-hard Hamil-
tonian Cycle problem (Garey and Johnson, 1979). Guo et al. (2018) pro-
pose a randomized approximation algorithm when the traffic matrix is
known in advance and a competitive online algorithm when the future
arriving traffic is not known. However, they assume that one config-
uration in data centers consists of one VNF placement and one rout-
ing path solution, and a (limited) set of configurations is given. Qu et
al. (2016) consider the VNF transmission and processing delays, and
formulate the VNF Placement and Routing problem as a Mixed Inte-
ger Linear Program (MILP). However, they assume that the virtual link
between two physical nodes can at most process one traffic flow at a
time. Li et al. (2017) address the latency-aware middlebox routing and
placement problem by leveraging a packet queuing model. However, a
fixed link transmission delay is assumed in their model. Hamann and
Fischer (2019) formulate the VNF placement and routing problem as an
ILP where a set of k paths between each node pair in the network are
precalculated and known. Yang et al. (2019a) propose an approxima-
tion algorithm to solve the VNF placement and routing problem in edge
clouds. The proposed approximation in (Yang et al., 2019a) leverages
randomized rounding technology and assumes that the paths between
each node pair are known/given.

Apart from that, there is also work about availability-aware VNF
provisioning (Fan et al., 2018; Yang et al., 2019b), VNF placement in
operator data centers (Tang et al., 2019), the resource allocation of
NFV in 5G mobile networks (Blanco et al., 2017), IoT (Fu et al., 2019)
and Radio Access Networks (RAN) (Garcia-Saavedra et al., 2018), etc.
Due to the complex nature of the VNF placement and/or traffic routing
problem in NFV networks, we observe that it is difficult to design a gen-
eral approximation algorithm to solve it. Instead, the current literature
mainly simplify some problem inputs or constraints (e.g., assuming the
paths between node pair are known (Yang et al., 2019a) or multipath
routing (Yu et al., 2017)) and devise proper approximation/heuristic
algorithms. Nevertheless, all the above work assume deterministic link
weight, therefore they cannot solve the proposed problem in this paper.

2.2. Traffic routing and VNF Placement in Stochastic (NFV) networks

So far, the above literature assume that the link delay and band-
width are deterministic, and this assumption is not always very true in
practice. The reason is that in practice, the network usually behaves
in a stochastic manner, which is mainly caused by inaccurate data,
expired exchanged information or insufficient estimation (Guerin and
Orda, 1999; Korkmaz and Krunz, 2003). In what follows, we will pro-
vide the related work about routing and VNF placement on stochastic
(NFV) networks:

Traffic Routing in Stochastic Networks: A survey about traffic
planning models and routing algorithms in stochastic networks can be
found in (Yang and Kuipers, 2014). Lorenz and Orda (1998) assume that
each link [ has a function p;(d) that represents the probability that link
(1) introduces a delay of no more than d time units. This so-called Delay-
Based Routing (DBR) problem is to find a path that has the biggest prob-
ability of not exceeding D. Lorenz and Orda prove that the DBR prob-
lem is NP-hard, and by decomposing the end-to-end delay constraint D
into local delay constraints, they manage to develop an FPTAS. How-
ever, the proposed algorithms in (Lorenz and Orda, 1998) cannot solve
the proposed problem in this paper. The reason is that it is required
to find a path for each VNF pair and also the bandwidth requirement
should be taken into account. Assuming the link’s bandwidth and delay
follows a log-concave distribution, we (Kuipers et al., 2014) propose a
polynomial-time convex optimization formulation to find the maximum
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flow in the so-called stochastic networks. When the delay constraint is
imposed on each path, the maximum flow problem is NP-hard. To solve
it, we (Kuipers et al., 2014) propose an approximation algorithm and
a tunable heuristic algorithm. However, the proposed approximation
algorithm in (Kuipers et al., 2014) is to find multipath and hence can-
not solve the considered problem in this paper accordingly.

VNF Placement in Stochastic NFV Networks: The most relevant
work with us is (Cheng et al., 2018), but it assumes that the service rate
demands and available amounts of wireless resources of nodes are ran-
dom and tackles the VNF placement problem in the so-called dynamic
networks. Cheng et al. (2018) further develop a distributed computing
framework with two-level decomposition to solve this problem. Zeng et
al. (2018) present an online VNF placement and data packets schedul-
ing framework in edge clouds by applying the Lyapunov optimization
theory. However, the routing issues are not considered in (Zeng et al.,
2018). While our work is on traffic routing in stochastic networks, and
therefore this paper is orthogonal with (Cheng et al., 2018; Zeng et al.,
2018).

Moreover, Miao et al. (2019) propose an analytical model based on
stochastic network calculus to calculate the delay bound of the stochas-
tic NFV networks. They further leverage the property of convolution
associativity and leftover service technologies to calculate the available
resources for VNF networks. However (Miao et al., 2019), tackles the
resource allocation problem in stochastic NFV networks from the sys-
tem side, and routing issues are not considered.

In all, we conclude that the traffic routing problem in stochastic
NFV networks has never been tackled by the existing literature, which
remains our contribution in this paper. To that end, we first mathemat-
ically model the stochastic link delay and bandwidth in stochastic NFV
networks and present an exact algorithm as well as a tunable heuristic
MCTR for this problem. We also conduct simulations to evaluate the
performance of the proposed algorithms.

3. Stochastic link weight

For each link [ € £, we assume that its delay and bandwidth are
stochastic and follow a given distribution. More specifically, it is
assumed that the allocated bandwidth has a known cumulative dis-
tribution function ¢;(b), which indicates the probability of being able
to allocate b units of bandwidth; the allocated delay follows a known
cumulative distribution function p;(d), which gives the probability of
transporting data with no more than d; units of delay. We assume that
the bandwidth allocated on each link I ranges from 0 to b/™*, and the

delay on each link [ ranges from d{“i“ > 0 to d;"**. For ease of notation
we will sometimes write ¢; and p; to denote ¢;(b;) and p;(d)). The traf-
fic request set is denoted by R, and for each r(F,B,Pg,D,Pp) € R, F
symbolizes a set of required ordered VNFs, Py refers to the probability
to realize B available bandwidth, and Pj, represents the probability of
realizing a total traversing delay D. Consequently, by finding an appro-
priate path between each VNF pair which is located on different nodes
(if the VNF pair are placed on the same node, then it is not necessary to
find path), we get an SFC for request r. The notations used in this paper
are summarized in Table 1.

Let us consider the example from Fig. 1, where f; is placed on node
a, f, is placed on node b and ¢, and f; is placed on node d. The allo-
cated link bandwidth x and delay y are assumed to follow a uniform
distribution, and their CDFs are labelled above each link. Now, suppose
there is a request r({f;.fs,f3},5,0.35,16,0.7). According to Fig. 1, if
we follow the path a—b — d, then the probability of realizing avail-
able bandwidth of at least 5 is (1 — %) -(1- %) ~ 0.33 < P, and the
probability of realizing a delay at most 16 is to solve the following
equation:

max YL Y2
96
subject to : y; +Yy, <=16 (€D
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Table 1
Notations.
Notation Description
G(N, L) A network G with node set N and link set £
c(b) CDF of being able to allocate b units of bandwidth
pi(d) CDF of transporting data with d units of delay
R Traffic request set and for each r(F, B, Py, D,P,) € R, F symbolizes a set of required ordered VNFs, Py refers to the
probability to realize B available bandwidth, and P, represents the probability of realizing a total traversing delay D
z(f) The set of nodes on which VNF f is placed
¥(n) The set of VNFs placed on n
k The number of samplings used in the heuristic
q The number of stored path per node in MCTR, where ¢ = ck
W,:{,'fj A boolean variable and it is 1 (true) if r’s requested VNF pair (f;, f]-) traverses link (u,v), and 0 (false) otherwise
ZZ{,’fJ A float variable indicating the allocated delay on link (u,v) for r’s requested VNF pair (f;, fj)

f

Fig. 1. An Example of illustrating stochastic link bandwidth and delay.

The objective is achieved when y; = y, = 8 (theoretically can be
derived from the inequality of geometric arithmetic (Hardy et al.,
1934)) which approximately leads to realizing probability of 8*8
0.67 < Pp.

However, both the requested Pp and Pj, are violated if using this
path, which indicates that this is not a feasible path to satisfy r. Simi-
larly, we can calculate that if we choose the path a —c¢ — d, the prob-
ability of realizing available bandwidth of at least 5 is (1 — %) -(1-

%) ~ 0.375 > Py and the probability of realizing a delay of at most 16
is approximately 0.81, which is greater than Pj,. As a result, we see that
a—c¢ — d constitutes a feasible SFC and can satisfy r.

4. Problem definition and formulation
4.1. Problem definition and complexity analysis

We consider a network G(N', L), where N represents a set of N
nodes and £ denotes a set of L links. For each link [ € L the allocated
bandwidth has a known CDF ¢,;(b;), which gives the probability of being
able to allocate no more than b; units of bandwidth. Moreover, if the
possible bandwidth allocated on each link [ ranges from 0 to b (0 <
b"*), then the probability of allocating a bandwidth out of this range
is 0, i.e. cl(b;“a") =1.

A certain number of VNFs are placed on network nodes, and for
each n € N, we denote W(n) as the set of VNFs placed on it. Formally,
the Traffic Routing in Stochastic NFV Networks (TRSN) problem can be
defined as follows:

Definition 1. For each request r € R, the TRSN problem is to find route
in each required VNF pair such that:

o The path between each VNF pair has at least B bandwidth and the total
probability to realize the bandwidth is no less than Pyg.

o The total traversing delay in an SFC is at most D and the probability to
realize the delay is no less than Pp.

Theorem 2. The TRSN problem is NP-hard.

Proof 1. Let us first introduce the NP-hard Hamiltonian path problem
(Garey and Johnson, 1979). A Hamiltonian path is a path in a graph that
visits each node exactly once. For simplicity, we assume that the allocated
bandwidth x on each link [ follows

_JB with probability =1 @
2B with probability < 1
and the allocated delay y on each link [ follows
D with probability =1
y=q 1 AP ®
D;/a  with probability < 1

where a; > 1 symbolizes a coefficient for each link. We assume N = |F|,
and on each node there is one distinct VNF placed on it. Now, suppose for
a request r({fy, f5, ..., fy}, B, 1, D, 1) where D is set to Y, D), then the
TRSN problem is equivalent to the Hamiltonian path problem. The proof is
therefore complete.

4.2. Problem formulation

In this section, we present an exact solution to formulate the TRSN
problem. We start with some necessary notations and variables.

R: Traffic request set R.

7(f): The set of nodes on which the VNF f is placed.

fi-fj: The required VNF pair.

r‘f“f’ : A boolean variable and it is 1 (true) if r’s requested VNF pair

fi fJ) traverses link (u,v), and O (false) otherwise.

r‘f“f’ : A float variable indicating the allocated delay on link (u,v)

for r's requested VNF pair (f;, f;).

Constraints:
Routing constraints:
Y wifi-1 vrer(fyerrer @
uex(f;):(wy)eL
Wl =1 v
wy = reR,(fl-,f]-)er,reR 5)
VEI[()S*) (uyv)eL
rfifi rfify
Wu,v T = z Wv,w]
(uy)eL :vézr(fi)Un(f,») (vw)eL :V§E7r(fi)U7t(f,»)
VreR,(fi,fj)er 6)
Delay constraints:
Wi M0 vreRr fif erwner %)
Y z ‘f“f’<rDVr€R ®
fifj€r wy)eL
maxpuv(Z ) >P, VreR )

(uv)eCf“fJ
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Bandwidth constraint:

H H (1-c,,(rB)>Pz VreR (10)
fifj€r wvEL
Link capacity constraint:
> Wl rB<br vuver a1
reRﬁ,)f,»Er

There is no objective (needed) in the proposed exact formulation,
but one could include the objective of e.g., minimizing the number
of links used. Egs. (4)-(6) are the multicommunity constraints that
account for the routing from a source to a destination and ensures to
find a path from the node where f; is located to the node where f; is
placed. More specially, for each VNF pair f; and f; of request r, Eq. (4)
ensures that if f; is placed on node u and r selects u as the node to
place f; and transfer data (since more than 1 nodes can host f; in the
network), then the sum of outgoing traffic from u is equal to 1. Eq. (5)
ensures that if f; is placed on node v and r selects v as the node to place
fj and transfer data (since more than 1 nodes can host fj in the network),
then the sum of incoming traffic to v is equal to 1. Eq. (6) ensures that
for any intermediate node v which does not host f; and f; (by setting
v & n(fy) U z(f;)), the sum of incoming traffic to v is equal to its outgo-
ing traffic. Eq. (7) applies big M-method to set the relation between W
and Z. More specifically, by setting M as a large enough number, when
Z is greater than 0, then W has to be 1, otherwise when Z is equal to
0, then W is forced to be 0. Eq. (8) ensures that the total delay during
the entire SFC is no greater than the specified. Eq. (9) ensures that the
probability of realizing the total allocated delay is at least Pp. Eq. (10)
ensures that the probability of realizing the link bandwidth is at least
Pg. Eq. (11) ensures that the total allocated bandwidth on each link
cannot exceed its maximum possible link capacity.

It is worthwhile to mention that the complexity of the proposed
exact formulation depends on the convexity of link delay and band-
width distribution. For example, when link CDF and CCDF are log-
concave functions (e.g., exponential distribution), Egs. (4)—(11) become
a convex optimization formulation.

0.8

0.5 ‘ ?\
0.2 e

Pr[b>x]

40 '

max
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5. Multi-Constrained Traffic Routing heuristic

Considering that the running time of the proposed exact solution in
Section 4.2 is exponential, especially when the problem size is large,
the exact solution cannot return a solution in an extremely long time.
Therefore, we propose a fast heuristic, called Multi-Constrained Traffic
Routing (MCTR) for the problem in this section. The idea of MCTR is
that it first discretizes the network in terms of link delay and link band-
width, and then runs a heuristic multi-constrained routing algorithm.
MCTR has three main features: (1) MCTR is a sampling-based heuris-
tic, that is, the more samplings are used to discretize the network, the
more accurate that the solution returned by the heuristic will have, but
more running time it will consume since the problem size is enlarged.
(2) MCTR leverages the Tunable Accuracy Multiple Constraints Routing
Algorithm (TAMCRA) to find the multi-constraint path for each adja-
cent VNF pair. TAMCRA (De Neve and Van Mieghem, 2000) is scalable
in the number of constraints and in the size of the graphs by applying
Dijkstra-like algorithm, and that multiple constraints routing problems
can be solved to a very high accuracy within a short time that increases
linearly with. (3) MCTR dynamically adjusts the link weights and delay
and bandwidth realizing probability constraint after finding the path
for each VNF pair so that the cumulated probabilities will not exceed
the specified. For completeness, we first give a formal definition of the
multi-constrained path selection problem as follows (Kuipers and Van
Mieghem, 2005):

Definition 3. Consider a network G(N', L), where each link | € L is spec-
ified by a link weight vector with m additive QoS link weights w;() > 0 for
all1 <i < m. Given m constraints T;, where 1 <i < m, the problem is to
find a path P from a source to a destination such that

z wi(D < T;

lep

(12)

A path that satisfies all m constraints is referred to be a feasible path.
The multi-constrained path selection problem is proved to be NP-hard
(Wang and Crowcroft, 1996), we therefore have chosen a heuristic for
the multi-constrained routing problem.

Prldi<y]

(2, -log(0.3), 0.5)

(4, -log(0.5), 0.5)

(6, -log(0.7), 0.5)

Fig. 2. Link transformation for the heuristic algorithm.
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Algorithm 1 MCTR (G(N, L), R, k).
1 foreach request r € R do

Journal of Network and Computer Applications 169 (2020) 102765

2 foreach possible corresponding SFC €2 do

3 foreach f;, f; € Q which are located on n; and n; do
4 if n; and n; have sufficient capability then

5 Discrete the network link weights by k£ samplings.
6 Apply TAMCRA to find a path from n; to n;.
7 if step 6 succeeds then

8 Adjust link weights and requirement.

9 if f; is the last required VNF then

10 L Return this solution.
11 else

12 L break;

Next, we will illustrate how to discretize the network. For a link, k
samples are taken for each delay distribution and bandwidth distribu-
tion, in the format of link weight vector (delay, -log(delay probability),
-log(bandwidth probability)). It is worthwhile to mention that the band-
width value does not exist in the weight vector, since we only need to
allocate just enough requested bandwidth. As a result, each link will be
transformed into k parallel links as illustrated in Fig. 2.

Subsequently, for each VNF pair f; and f;, we run the Tunable Accu-
racy Multiple Constraints Routing Algorithm (TAMCRA) (De Neve and
Van Mieghem, 2000), a heuristic for the multi-constrained path prob-
lem. The objective in TAMCRA is to minimize })c,d;, where d; indi-
cates the delay of traversed link [ in path p. The delay probability con-
straint in TAMCRA is — log(y—PD) and the bandwidth probability constraint

in TAMCRA is — % y is used to “scale” the original requirement to
each requested VNF pair and is first set to be the number of requested
VNF pairs for simplicity. In case under —@ the path is not found
by applying TAMCRA, we can enlarge y and run TAMCRA again. After
that, the delay probability constraint is set — log(};%, where P, stands
for the product of already consumed probability for each VNF pair,
and y’ represents the number of VNF pairs that have not been iterated.
TAMCRA never returns a path that violates QoS constraint, but it may
fail to find a solution since it is a heuristic. TAMCRA is tunable in how
many paths it stores per node, a parameter that we set equal to q = ck,
a constant ¢ times the number of samples k.

An example is given in Fig. 3. It is assumed that the bandwidth
CDF for link (b,c) is ’g‘, and the bandwidth CDF for all the other
links is %. Moreover, except for link (a,c), the delay distribution
are the same for all the other links. Assuming there is a request
r({f1.f2.f3},4,0.5,15,0.1). The link weight assignment are shown in
Fig. 3(a). Since r asks for allocating at least a bandwidth of B = 4 and
link (b, c) has a bandwidth CDF g, then allocating at least a bandwidth

of 4 leads to a probability of 1 — g = 0.33. Similarly, the probability
of allocating at least a bandwidth of 4 for the other links is equal to
1- % = 0.6. Since f; and f, are located on a and c, respectively, we
take the path a—b — c to route traffic from a (f;) to c (f;). The path
a — ¢ cannot be selected, otherwise P, will be violated. Afterwards, the
link weights of (a,b) and (b, c) will be adjusted. More specifically, since
4 bits of bandwidth have already been allocated, the probability of allo-

cating another 4 bits bandwidth on link (a, b) is Zzzzii; = i:% 18 ~ 0.33.

Moreover, since the maximum possible bandwidth of link (b,c) is 6 and
it has already allocated 4 bits of bandwidth, link (b, c) cannot allocate
another 4 bits bandwidth. We therefore used dashed line to represent
it which means it cannot be used. Afterwards in Fig. 3(b), we continue
to find a path from f, to f;. It can be seen that path ¢ — d is the only
feasible path. In all, the final pathis a—b — ¢ — d has a total delay
of 15 by summing up the link delay of (a,b), (b,c) and (c,d) and its
realizing probability is equal to 0.9:0.9:0.9 = 0.729 by taking the
product of probabilities to realize these delay. Similarly, each link in

(5, -log(0.9), -log(0.6))

D=15
(5, -10g(0.9), -log(0.33)) B=4
X N ) ﬁ“fg'?
\a/ \C/ \d/‘ e
= (5, -1og(0.05), -10g(0.6)) %" (5, -log(0.9), -log(0.6))
f1 fz f}
path from fj to f;: a-b-c
(a) Path finding from f1 to f2
b
(5, -1og(0.9), -log(0.33)) !
! (5, -log(0.9), -log(0.6))
| D=15-10=5
! B=4
! P'p=0.6/0.9°=0.74
a c d ) P's=0.1/(0.6%0.33)=0.5

) £, (5,-10g(0.05), -log(0.6)) f, (5, -log(0.9), -log(0.6)) f,
path from f; to f3: c-d

(b) Path finding from f2 to f3

Fig. 3. An example of the heuristic link changes for k = 1.

path is a — b — ¢ — d can allocate available bandwidth of 4 and the total
realizing probability is equal to 0.6 -0.33-0.6 = 0.1188. The pseudo
code of MCTR can be seen in Algorithm 1.

The complexity of MCTR is analyzed like this. There are in total
|R| requests, and for each request, there are constant number of pos-
sible corresponding SFCs and at most |F| —1 required VNF pairs.
For each VNF pair, running TAMCRA calls for a time complexity of
O(gNlog(gN) + q>kL), where q is the maximum number of stored
paths at each node. Consequently, the total time complexity of MCTR
is O(|R||F|gNlog(gN) + |R||F|g*kL).

6. Simulations
6.1. Simulation setup

In this section, we first conduct simulations on two backbone net-
works: USANet, displayed in Fig. 4, which is a realistic carrier back-
bone network, and GEANT, shown in Fig. 5, which is a pan-European
communications infrastructure. We also conduct simulations on a 100-
node network: we generate 100 nodes and the link existence in each
node pair occurs with a probability of 1, which follows an Erd\H{o}s-
Rényi model (Erd6s and Rényi, 1959). We assume there are in total 15
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Fig. 5. GEANT pan-European research network.

VNFs, and each VNF is randomly placed on m nodes, where m € [2, 4].
The link delay and bandwidth in these 3 networks are assumed to fol-
low three distributions, namely the exponential, uniform and weibull
distributions. In the exponential distribution 1 — e *, we choose
A € [0.001,0.01] for the bandwidth distributions of different links
and 4 € [0.5,1.5] for the delay distributions of different links. In the
uniform distribution ’l;:—z, we choose @ = 0 for both bandwidth and
delay, and f € [200,300] for bandwidth and # € [3, 7] for delay. In
the weibull distribution 1 — e~®/»* | we choose k = 1 for both band-
width and delay, and 4 € [1, 5] for delay and 4 € [0.0001, 0.0005]
for bandwidth.

Considering that there is no existing work dealing with the traffic
routing problem in stochastic networks, we compare the exact solu-
tion and heuristic MCTR with two benchmark heuristics, namely Least
Expected Path (LEP) and Random algorithm. For each request and its
possible corresponding SFC, for each VNF pair that are located on dif-
ferent nodes n; and n;, these two heuristics perform as follows:

e LEP: It first assigns each link with the expected delay value, and
then runs the shortest path from n; to n;.

e Random algorithm: It finds w-shortest hop path from n; to n;, and
randomly selects one path from these k paths.
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After determining the path for each VNF pair, we let L, represent
the total number of links (hops) that the required SFC traverses. Sub-
sequently, for both LEP and Random algorithm, each traversed link [
will allocate Z—D delay and r.B - t; bandwidth, where t; denotes the times

that the link is traversed.® For each traversed link [, the probability of
allocating delay is calculated as CDFZ(Z—D), and the probability of real-
izing bandwidth calculated as CCDFl(r.ﬁ - ;). By taking the product of
all allocated probabilities, we can calculate whether the request can
be satisfied or not. Random algorithm will try at most p times from
these w paths if the cumulated constraint (e.g., delay, bandwidth, real-

izing probability) is not obeyed. In particular, we set w = 10 and
p = 3 in Random algorithm. We first set in MCTR that k = 4,8,16
and ¢ = 1, which means that the maximum number of stored paths

is set ¢ = 4,8,16, respectively, when compared to LEP and Random
algorithm. Later for a fixed k = 8, we will vary q in order to further
evaluate the heuristic algorithm.

In order that the feasible solution exists and increase the difficulty
for the algorithms to find solutions, the request r(F, B, Pz, D, Pp,) is set
like this (in line with (Kuipers et al., 2014)): For exponential distri-
bution, we have set D € [5, 15], P, € [0.1,0.4], B € [1, 10] and
Pg € [0.1,0.3]; for uniform distribution, we have set D € [15, 301,
P, € [0.1,0.2], B € [1,10] and Pz € [0.05,0.1]; for weibull distri-
bution, we have set D € [15, 30], P, € [0.01,0.02], B € [1, 10] and
Pg € [0.005,0.01]. Moreover, F is between 2 and 5 for all 3 distribu-
tions. Table 2 provides the simulation parameters.

The simulations are run on a high-performance desktop PC with
3.4 GHz and 16 GB memory. We use C# to implement all the heuristics,
and we use CVX in Matlab to implement the exact solution, a package
for specifying and solving convex optimization problems (Grant and
Boyd, 2014).

6.2. Simulation results

6.2.1. Backbone networks

We first generate in total 100 requests for each distribution, and it
is assumed that the request arrives in network one by one in an online
fashion. Accordingly, the algorithm runs 100 times sequentially for each
request. We first compare the algorithms in terms of Acceptance Ratio
(AR), which is defined as the number of accepted requests divided by
the total number of requests. As expected, Fig. 6 shows that the exact
solution can always find paths for each request (if it exists) with AR =1,
which also verifies its exactness and correctness. With k (and q) increas-
ing, we found that the achieved AR value of MCTR approaches to the
close-to-optimal (above 90% when k = 16). The reason is that more
samples are created in networks, and therefore there are more paral-
lel links with various delay and bandwidth allocation weights between
each node pair, which makes MCTR to have more choices to find fea-
sible solutions. Since MCTR leverages TAMCRA, which is a heuristic
to find the multi-constrained path, MCTR may not always find a fea-
sible solution. However, with the maximum number of stored paths
increasing, it increases the chance for MCTR to return the feasible solu-
tion. On the other hand, both the LEP and Random algorithm behave
poorly by having a much lower AR value. For LEP, it indicates that
the least expected path may not always satisfy the request with spec-
ified delay and bandwidth probability requirement. For the Random
algorithm, although it adopts w = 10 paths for each VNF pair, the
quality of paths is not defined very well according to the request, and
its randomness further leads to the worst performance especially under
a stricter problem condition.

Fig. 7 plots the total running time of all the algorithms. We see that
the exact solution consumes a significantly higher running time than 3
heuristics. Although it can achieve the best performance in terms of AR,

3 It is possible that one link is traversed more than once in an SFC.
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Table 2
Simulation parameters.

Distribution r(F,B,Pg,D,Pp) Link Bandwidth Link Delay

1 —e™ B € [1,10],P; € [0.1,0.3],D € [5,15],P, € [0.1,0.4] A € [0.001,0.01] 4 € [0.5,1.5]

— B € [1,10],P; € [0.05,0.1],D € [15,30],P, € [0.1,0.2] a =0 e [200,300] a=0p €37

1—e/ak B € [1,10],P; € [0.005,0.01],D € [15,30],P, € [0.01,0.02] k = 14 € [0.0001,0.0005] k=14€ll,5]
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it still cannot be adopted to compute the solution for when the request
arrives in an online fashion. The proposed MCTR has much lower run-
ning time than the exact solution, but its running time is higher than
the two benchmark heuristics. However, it is still acceptable since it
can achieve close-to-optimal AR value. We observe that with k increas-
ing, its running time also increases. This is caused by the larger network
scale and larger maximum number of stored paths. Nevertheless, we can
tune the parameters of MCTR in practice to strike a tradeoff between
accuracy and running time.

6.2.2. 100-Node network

In this scenario, we run all the algorithms on a larger 100-node
network, but we found that the exact algorithm cannot return a solution
because of its exponential time complexity. This also indicates that the
exact solution cannot scale well with the problem size and cannot be
adopted in practice. Due to the lack of the exact solution, we generate
100 sets of 100 traffic requests for distributions, and evaluate all the
heuristic algorithms for those 100 sets of 100 traffic requests (100 runs).
By doing this, we want to establish confidence on the performance of
heuristics. Fig. 8(a) and (b) respectively depict the AR and running time
(in log scale) of all these algorithms, where the confidence interval is set
to 95%. The 95% confidence interval is calculated for all the figures, but

in those where it is not visible, the interval is negligibly small.* More
specifically, in Fig. 8(a), the confidence intervals of AR values for all
the algorithms stay around 0.01. In Fig. 8(b), the confidence intervals
of running time for MCTR and LEP ranges from 0.3 to 0.6, and the
confidence intervals of running time for Random ranges from 1.9 to 3.3,
which is mainly caused by its randomness. We see that the AR values of
all the algorithms in 100-node network are lower than the AR values in
backbone networks, due to the reason that SFC may traverse more links
which consumes more delay and hence violate the required delay value.
Also, the enlarged network scale makes all the algorithms to consume
more time than backbone networks. Nevertheless, the proposed MCTR
achieves much higher AR value than LEP and Random, but this comes
at the expense of a bit higher running time.

6.2.3. Varying the maximum number of stored paths for MCTR

Finally, in MCTR we keep k = 8 the same and vary the value of
¢ = 1,2,3,4. Our aim is to evaluate the performance of MCTR when
the maximum number of stored paths ¢ = ck changes. In particular,

4 We note here that some plots are log-scale that additionally contributes to
the confidence interval visibility.
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we only show the average value of all the algorithms in the 100-node
network since the confidence intervals in this case are very small. As
expected, Fig. 9 shows that with q increasing, its achieved AR value
increases, which indicates that a bigger ¢ may lead to better perfor-
mance. However, the running time of MCTR increases when q increas-
ing, as we see in Fig. 10.

In all, we conclude that the exact solution can always find the opti-
mal solution (if there exists), but this comes at the expense of signifi-
cantly higher running time. When the problem size becomes larger (e.g,
|IN| = 100), the exact solution cannot return a feasible solution within
quite a long time. Our proposed MCTR, can return a feasible solution at
a much quicker time regardless of the problem size, which can be used

when the traffic requests arrive in an online fashion.

7. Conclusion

In this paper, we have studied the Traffic Routing problem in
Stochastic NFV Networks. The randomness/uncertainties in networks
usually arise from inaccurate data, expired exchanged information,
insufficient estimation to the network, etc. Under the assumption that
the link delay and link bandwidth are random variables and their CDFs
are known, we have shown that the problem is NP-hard. To solve
it, we present an exact optimization formulation as well as a tunable
sampling-based heuristic MCTR. MCTR leverages the Tunable Accuracy
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Fig. 10. Running Time of MCTR on three networks for k = 8 and ¢ = ck, where ¢ = 1,2, 3,4: (a) USANet (b) GEANT (c)100-node network.
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Multiple Constraints Routing Algorithm (TAMCRA) to find the multi-
constraint path for each adjacent VNF pair. Moreover, it dynamically
adjusts the link weights and delay and bandwidth realizing probability
constraint after finding the path for each VNF pair in order that the
cumulated probabilities will not exceed the specified. The simulation
results demonstrate that the proposed heuristic can achieve close-to-
optimal performance in terms of acceptance ratio, but its running time
is much lower than the exact solution. Moreover, MCTR can scale well
when the network size is enlarged to 100-node, but the exact solution
cannot return a feasible in this scenario within a reasonably long time,
which indicates that the exact solution cannot be adopted for when the
provisioning time needs to be short. We found that with more samplings
are allowed in MCTR, its achieved AR value gets higher which means it
can accept more requests. Meanwhile, when the number of stored paths
is increased in MCTR, its performance also gets better. This has verified
that MCTR is a tunable and efficient heuristic that can achieve a trade-
off between accuracy and running time. In our future work, we would
like to additionally consider the VNF placement problem in stochastic
NFV networks and implement the proposed algorithms in an NFV-based
simulator.
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