A-DDPG: Attention Mechanism-based Deep
Reinforcement Learning for NFV

Nan He*, Song Yang*, Fan Li*, Stojan Trajanovski', Fernando A. Kuipers?, Xiaoming Fu®
* School of Computer Science and Technology, Beijing Institute of Technology, China
t Microsoft, W2 6BD London, UK
! Embedded and Networked Systems group, Delft University of Technology, The Netherlands
§ Institute of Computer Science, University of Gottingen, Germany
Email: {henan, S.Yang, fli}@bit.edu.cn, sttrajan@microsoft.com, F.A.Kuipers @tudelft.nl, Fu@cs.uni-goettingen.de

Abstract—The efficacy of Network Function Virtualization
(NFV) depends critically on (1) where the virtual network
functions (VNFs) are placed and (2) how the traffic is routed.
Unfortunately, these aspects are not easily optimized, especially
under time-varying network states with different quality of
service (QoS) requirements. Given the importance of NFV, many
approaches have been proposed to solve the VNF placement
and traffic routing problem. However, those prior approaches
mainly assume that the state of the network is static and
known, disregarding real-time network variations. To bridge
that gap, in this paper, we formulate the VNF placement and
traffic routing problem as a Markov Decision Process model to
capture the dynamic network state transitions. In order to jointly
minimize the delay and cost of NFV providers and maximize the
revenue, we devise a customized Deep Reinforcement Learning
(DRL) algorithm, called A-DDPG, for VNF placement and traffic
routing in a real-time network. A-DDPG uses the attention
mechanism to ascertain smooth network behavior within the
general framework of network utility maximization (NUM). The
simulation results show that A-DDPG outperforms the state-of-
the-art in terms of network utility, delay, and cost.

Index Terms—Network function virtualization, deep reinforce-
ment learning, placement, routing

I. INTRODUCTION

Traditionally, Network Functions (NFs), such as firewalls
and load balancers, are implemented on physical devices,
called middleboxes, which are costly, lack of flexibility, and
difficult to operate. Network Function Virtualization (NFV)
has emerged as an innovative technique that can deal with
these challenges by decoupling network functions from ded-
icated hardware and realizing them in the form of Virtual
Network Functions (VNFs) [1], [2]. Because this technique
shows great potential in promoting openness, innovation,
flexibility, and scalability of networks, NFV attracts a good
deal of interest from the networking community [3]-[5]. To

Song Yang is the corresponding author.

The work of Song Yang is partially supported by the National Natural
Science Foundation of China (NSFC) under Grant No. 61802018 and the
Beijing Institute of Technology Research Fund Program for Young Scholars.
The work of Fan Li is partially supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 62072040, 61772077, and
Beijing Natural Science Foundation under Grant No. 4192051. The work of
Xiaoming Fu is partially supported by the EUH2020 RISE COSAFE project
(No. 824019).

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

build more complex services, the notion of Service Function
Chaining (SFC) can be used, where a sequence of VNFs
must be processed in a pre-defined order to collectively
deliver a certain service. Therefore, an important problem is to
determine the positions for placing VNFs and select the paths
for routing traffic, such that the service requirement can be
satisfied. The problem of VNF placement and traffic routing
is referred to as VNF-PR in this paper. In solving the VNF-PR
problem, service providers typically strive for network utility
maximization (NUM). Therefore, jointly considering cost and
QoS (e.g., delay) schemes is required, which will lead to a
better user experience and higher profit.

Existing works on combined VNF-PR problem is reduced
to linear programming [6], [7] or the VNF-PR problem is
translated into some well-known NP-hard problems [8] such as
the knapsack problem, and then a heuristic or approximation
method is proposed to solve it [9]-[11], at the expense of
ignoring the network state dynamics. For better performance,
existing works formulate a one-shot optimization problem in
a dynamic environment [12], and some works that consider
the VNF-PR problem over the entire system lifespan [13].
However, they only focus on the revenue of NFV operators
and do not pay attention to the network utility consisting of
revenue and cost.

Another line of work applies (Deep) Reinforcement Learn-
ing (DRL) [14] to solve the VNF-PR problem [15]-[17].
More specifically, to solve the VNF-PR problem, an RL agent
interacts with the real-time NFV-enabled environment through
the implementation of placement and routing strategies. Sub-
sequently, the RL agent continuously optimizes the strategies
according to the reward value of the environment feedback
(e.g., delay, capacity, and overhead). However, given the large
state space involved, RL methods become impractical and
inefficient for large networks. On the contrary, deep neural
networks can be applied to high-dimensional state space.
Different from these work, in this paper, we leverage the
feature of deep neural networks and introduce a Markov
Decision Process (MDP) to capture the dynamic network state
transitions and process them within a DRL architecture. We
are motivated to adopt Deep Deterministic Policy Gradient
(DDPG) [18] algorithm to deal with the high-dimensional and

time-vary network state and complex network environment.

Typically, a DRL agent will not pay equal attention to all
the available placement nodes. The agent usually chooses the
current action based on the information of higher levels of
cognitive skills and ignores other perceivable information. In
this paper, we introduce the concept of attention mechanism
which is widely used in the neural image caption generation
[19] to simulate the agent’s action for DDPG. We find that
during the training process of DDPG, the attention mechanism
will automatically focus on the feasible neighbor node that
may affect the agent’s selection behavior. It ultimately helps
to reduce the attention to other unnecessary nodes and improve
the training efficiency of the model. With this motivation,
we design a customized attention mechanism-based DDPG to
train our DRL model.

The main contributions of this paper are as follows:

o We formulate the VNF-PR problem as an optimization
model and establish a utility function aiming to solve a
trade-off between revenue and cost.

o We propose a novel Attention mechanism-based Deep
Deterministic Policy Gradients (A-DDPG) framework,
using the Actor-Critic network structure, in which both
the Actor and Critic networks adopt double networks
(namely the main network and the target network).

o Through extensive simulation experiments, we show that
our A-DDPG framework outperforms the state-of-the-art
in terms of network utility, delay, and cost.

The remainder of this paper is organized as follows. Section
II defines the VNF-PR problem. In Section III, we devise the
A-DDPG algorithm to solve the VNF-PR problem. Section
IV provides the simulation results. Section V describes related
work and we conclude in Section VI.

II. MODEL AND PROBLEM FORMULATE

In this section, we begin with describing the network utility
model in Section II-A and then we formulate the VNF-PR
problem with the objective and constraints in Section II-B.
For the convenience of reading, we summarize the notations
used in this paper in Table I.

A. Network Utility Model

Firstly, we consider a physical network which is presented
as a graph G = {N, &}, where N and & stand for the
node set and the link set, respectively. We mainly consider
two kinds of resource constraints, including node and link
resources constraints. Each node n € N has a capacity of
0y, (i.e., CPU cycles per second) and a delay of d,,. Each link
e € & has a capacity of 7. and a delay d.. We use R to
represent a set of |R| requests, and each (¢, F, D) € R has
multiple VNFs that are used in sequence, where ¢ indicates
the flow rate, F represents a set of requested VNFs, and
D denotes the requested delay. We define the VNFs set as

» = {f1,f2,., [}. Bach VNF f € F,. on node n € N
requires time of D,{ to process it. Before SFC, We define k as
a constant and the range is (0, K), when all VNFs in SFC are

TABLE I
NOTATIONS.
Variable Definition
g Physical network
N The set of nodes of the network
E The set of links of the network
The set of request. For each r(&, F, D) € R,
R ¢ indicates the flow rate, F represents a set of
requested VNFs, D denotes the requested delay
Fr The set of requested VNFs of r € R
Uy o, Us g The revenue function and cost function
T The total delay of network request r € R
C’,{ Capacity demand for f € F on node n € N
Clu,w The link capacity demand between v and v
de Delay demand for f € F, on node n
Ao v Delay demand between w and v
Ony Me Capacity of node n € N and link e € £
)4 The expected service payment from consumers
Bor, pde_ptr The unit operation cost, unit deployment cost
and unit transmission cost, respectively
S, A R The state space, action space, and reward, respectively
rf A Boolean variable. It is 1 if r’s requested
i VNF f is placed on n; and O otherwise
A Boolean variable. It is 1 if path
Yuv between u and v is used for delivering
the requested task of 7; and O otherwise
A Boolean variable. It is 1 if 7 is accepted;
i and O otherwise
ki, vi, q; The key, value and query for node i € N
scg The compatibility of query g; with key k;
0 and 69 The weights of actor and critic networks

successfully placed and routed, £k = K. We use the high-order
matrix K % A to represent the deployment status of VNF on
a physical server.

The total network utility to serve a request r consists of
revenue and cost. More specifically, we define the utility
function U" to request r as:

Ur=ul, —us (1)

where ug , is the revenue function, and ug , is the total cost.
We use the concept of Shannon’s entropy [20] and define the
revenue function as:

=D U= ——l gf))

reR reR

where & represents the traffic of the request r, and VU is the
expected service revenue from consumers according to the
SLA [21]. T" represents the total delay of network request
r, and it is the sum of the processing delay of all nodes.
The purpose of using information entropy is to unify service

revenue and delay into an order of magnitude to ensure the
additivity between data. The transmission delay in the SFC is
defined as:

" = Z anl - df + Z Yoo Quw Yu,v,n €N (3)
fi€Fr ewvesl

where df represents the delay demand for f € F, on node
n, d, , indicates the delay demand between nodes v and v.

The cost function ug , includes three parts: operation cost,
deployment cost and transmission cost.

1) Operation cost: Each physical node needs to complete
the preparatory work before deploying VNFs, such as the pre-
configuration of different types of VNFs. We define the unit
operating cost as ®°P, then the total operation cost is defined
as:

uy =y apl ®P VreR,feF, €))
neN

2) Deployment cost: The deployment cost of a server is
directly proportional to the resources consumed. Therefore,
we stipulate that VNF deployment cost is mainly generated
by the server of the deployed function. If no VNF is placed
on the server, the deployment cost is not considered. We define
the unit deployment cost as ®?¢. The total deployment cost is
defined as:

ul, =N apl . o% wreR, feF, (5)
neN

3) Transmission cost: The transmission cost is the com-
munication cost for transferring traffic between nodes. In
practice, the deployment cost is negatively correlated with the
transmission cost [22]. When the number of VNFs is reduced
to save on deployment cost, the average transmission cost of
the network will increase. We define the transmission unit cost
as ®'". The total transmission cost is defined as:

o= U & O VreRuveN (6
ec&

Finally, ug , is a combination of above mentioned three kinds
of cost:

c _ ,o0p de tr
u a us,a + us,a + us,a (7)

S’

B. Problem Definition and Formulation

After the VNF is placed to a physical node in G, the path
for link mapping follows the order of the SFC, to reduce the
dimension of the action space and solve the problem appropri-
ately. Formally, the VNF Placement and traffic Routing (VNF-
PR) problem can be defined as follows:

Definition I: Given are a network G = {N,E} and a set
of requests R, for each request r(£, F, D) € R, the VNF-PR
problem is to place the VNFs on N and to route the traffic
in a specific order, such that the network utility > . U" is
maximized.

The VNF placement and traffic routing problem is known to
be NP-hard [8]. We first formally present the VNF-PR problem
with objectives and constraints. We begin with some necessary
variables.

Boolean Variables:

a7/ : It is 1 if 7’'s requested VNF f is placed on n; and 0
otherwise.

Yuo: It is 1 if path between u and v is used for delivering
the requested task of r; and 0 otherwise.

Objective:

max Z U 3

reR
Placement Constraint:
da =1 VreR,feF, ©)
neN
Node Capacity Constraint:
SN apt 0l <6, YneN

reR fer

(10)

Link Capacity Constraint:
Z Zyz,u -Cupw < e Yu,v €N

reR ec

(an

Delay Constraint:

Z Z I;:L’fld£+ Z Z yz,,q;‘du,v <DVreR (12)

fer neN u,wEN ev:v el

Eq. (8) maximizes the network utility. Eq. (9) ensures that
for each requested VNF f, it must be placed on one node in
the network. Eq. (10) indicates that each node’s capacity is not
violated. Eq. (11) ensures that each link’s load is not greater
than 7. Eq. (12) ensures that the total delay for each request
does not exceed D.

Without considering the variability of network states, the
optimization problem can be solved by using ILP or heuris-
tic algorithms [8]. However, it is non-trivial to use those
techniques to model real-time metrics. DRL can capture the
dynamic states of the networks. Therefore, in Section III, we
exploit DRL to solve the VNF placement and traffic routing
problem.

III. DEEP REINFORCEMENT LEARNING

In this section, we begin with the DRL model design in
Section III-A. This is a Markov decision process including
state, action, and reward. Then we propose our A-DDPG
framework to solve the VNF-PR problem in Section III-B.

A. DRL Model Design

In the DRL model, three elements, which are based on
a Markov decision process, can be described by a tu-
ple (S, A, R), referring to the state space, action space, and
reward, respectively. To deal with the real-time network state
changes caused by VNF-PR, we consider a discrete-time
period T. From state S, after taking action A, the agent
transfers to the next state S’, and generates a return R (reward

or penalty) that guides the DRL. Then the agent makes new
decisions and the procedure repeats. We define the 3-tuple
(S, A, R) for the VNF-PR problem as follows:

State: The state space can be described by a vector S =
{s1, $2, 83, ..., ST}, Where each term s; € S represents the
remaining resources of the virtual links and nodes at time ¢.
T represents a periodic discrete-time.

Action: The action of any agent is a vector A with each
term a € A representing VNF placement and traffic routing.
Therefore, we define an action as a = {27/, ¢} Vvr ¢
R, feF., neN

Reward: The value of the reward is a value indicating cor-
rect action. Whether the action can bring profit and whether the
user’s demand is met is taken as the criteria to affect the reward
value. The reward received at time-slot ¢ is set as the objective
of our utility function, defined as R = U" = ug, — ug,
according to Eq. (1). If the action brings benefits to the
network and saves cost, the reward will be a positive value
to encourage the operation. However, if the cost increases or
the constraint is violated, a negative reward is returned.

B. A-DDPG Framework

Incorporating the above definitions, we start to design our
A-DDPG framework. We first present the attention model in
Section III-B1. Then, we describe the Actor-Critic network in
Section III-B2. Finally, we complete the algorithm in Section
1II-B3.

1) Attention Model: We argue that the neighbor nodes of
each server node are of great significance to the performance
of VNFs placement and routing. Therefore, we introduce an
attention mechanism into the neural network, which allows
the network to better obtain neighbor node information. The
attention mechanism assumes that weights of nodes measure
matching degree between neighbors in the attention layer.

Formally, we define h; as the state of the node, and the key
k;, value v;, and ¢; can be calculated as follows:

chivgi=W® . h; YieN (13)

where the W, WX and WV are the parameter matrices that
can be learned, and h; is equal to s; defined in section IIL. The
compatibility sc] of the query ¢; of node ¢ with the key k; of
node j is calculated as the active function (e.g., dot-product):

ki =W hjv; =WV

scl = active(qi, kj) Vi,j €N (14)

According to Eq. (14), we compute the weights aZ using a
softmax function:

. . escg . .
al = softmaz(scl) = W Vi,jeN (15)
=167
Then the attention value is equal to:
N N sct

* Uy VZ,] € N
(16)

mwwmm:Z#WFE}%;ﬁ

sc
i=1 o1 i €56

Linear
layer
(32 units)

Input layer win32 - Attention layer =~ win+32 W2:32*16

Linear
(ISI* |A] units) (ISI* A units) [

W3:16*1 Output
layer

(16 units) (1 units)

° wli've
() i it t)
o » 41‘ @
E .
.]
i(t atyt S’ ()
T > X o

Fig. 1. Actor-Critic Network Design of A-DDPG Framework.

2) Actor-Critic Network Design: Our A-DDPG algorithm
constructs a deep reinforcement network fitting state-action
value function to solve the state space explosion problem. We
use the Actor-Critic network structure, in which the Actor and
Critic networks both adopt double-networks, namely the main
network and the target network. Therefore, our framework has
four networks for DRL agent training to solve the VNF-PR
problem. The four network structures are the same, as shown
in Fig. 1. In the Actor-Critic network, the observation state and
action are taken as the input, and two-layer hidden networks
with 32 and 16 neurons are used to process the input to
understand the deployment status of the physical server in the
current network. Then the processing results are imported into
a full connection layer with relu as the activation function.
The network uses the cumulative reward as the target value
and the expected cumulative reward as the predicted value.
The purpose of training is to make the predicted value as close
as possible to the target value. The equation to define the loss
function is as follows:

L(O) = 33— Qse.arl69)) (17)

where 6 represents the parameter of actor for sampling and
B indicates the size of the replay buffer. Then, the partial
derivative of the loss function to the weight of the neural
network can be calculated as:

3Q(st, at|9Q)

00 (18)

827(9@ - ;;(yt - Q(Staath)Q)

where Q(s¢,a¢|0%) refers to the long-term return of an ac-
tion, taking a specific a; under a specific policy from the
current state s;, and y; denotes the predicted return. Through
multiple iterations of the gradient descent method and the
back-propagation mechanism, the Q(s;,a;|#?) value can be
obtained.

4 Ny, 7SFC>\ StateActi Next A-DDPG,
AT ﬁ State
s @ s1 al S22 2A¢
s @& ‘& =
I} @ a6
—

+1
0
-1
-1
S2 a3 1 S18 —> A- DDP(J
é as 0 S3
Jore the a7 0 S10
Physical network topology training [-83-Fa6 111814 | |nput the sampling .
ot et dat S4Ra8NEHINESON| (ata into the DDPG
Optimization objective al6 -1 SI6 oodel
maX:z(u:n(l)_ufa(,)) ''''' pp-iSOde*A[4-DDPG,,
K el / Experience replay
re ——
i Training DDPC HA k model
f\‘“h\ H‘M‘ :‘ put t current stat smemnnkemm
Get the | and action into the Input the r
ontimal nvironment 3 main network s;,af [4[a8 +; ssl!'s mwux‘ (HIH
trateoy iy 3[
af Actor n (.\‘
Qw‘ o
.‘
L\
@

LSten 54

Run simulatior
xperiment
online

f the target
network

! \v4 ’
Runnmg Dat ! o1 Loss function

L:%Z(y, ~0(s.q,0°)2)

| Running Data Imemc/:mi
RUAATNG Data
Runnlng process |

Fig. 2. The A-DDPG Framework.

Training process

3) Algorithm Design: The A-DDPG framework is divided
into three main processes: observation process, training pro-
cess, and running process, as shown in Fig. 2.

a) Observation process: The whole observation process
mainly consists of two parts: Step 1 and Step 2 in Fig. 2.

Step 1, which is the initial phase of observation, begins
with the agent interacting with the environment. The step is
mainly used to obtain the initial state and store the historical
samples. More specifically, the agent obtains the original state
of the environment (including the routing status of the server,
etc.) and collects environmental historical samples that need
to be trained. These samples contain a sequence composed
of the initial state s;, action a;, reward r;, and the next state
S¢+1- Then the samples are put into the replay memory (Step
1). Subsequently, the action is obtained according to the e
greedy strategy (since the neural network parameters are also
randomly initialized, the parameters will not be updated at the
step, and they are collectively called random actions). Next, €
is reduced according to the number of iterations. Afterward,
the simulator performs the selecting action and returns a new
state and reward.

Step 2 of the observation process begins in the replay buffer.
The samples of the replay buffer must be independent and
identically distributed. However, the adjacent training samples
of RL are related to each other. Therefore, an experience replay
and target network are introduced into the network to break
up the correlation. More specifically, the previous state s,
action a;, new state s;;1, and reward r; are assembled into
(s¢,as,7t, Se+1) to enter the replay memory for parameter
updating. Finally, the action to be executed next is selected
according to the € greedy strategy, and the cycle is repeated
until the number of iterations reaches the limitation (depending

Algorithm 1 A-DDPG Training Procedure

1: Randomly initialize critic network Q(s,a|0%) and actor
p(s|6") with weights 69 and 6*

Initialize target network Q and ' with 89 , 6

2:
3: Initialize replay buffer R
4: for episode =0,1,..., M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s
7. for t=0,1,....,7 do
8: Select action a; = pu(s¢]6") + N; according to the
current policy 6 and exploration noise N;
9: Execute action a; and observe reward r; and observe
new state Sy
10: Store a random minibatch of [N transitions
(8¢, a1, 7ty St41) from D , ,
11: Set yp =10 +7Q (st41, 14 (5041]0%)|69)
12: Update critic by minimizing the loss:
L= 55, — Qor,arl09)?)
13: Update the actor policy using the sampled gradient:
Voud = 53 Va@ (51, a|09) ou 1 (s]0") |s,)
14: Update the target network:

GQ/ <—T9Q+(1—7')9? ,
OF — 1O + (1 —71) 0"
15: end for
16: end for

on the size of the replay buffer).

b) Training process: After the observation process, the
sufficient samples required for A-DDPG training are obtained.
Algorithm 1 describes the training process of Step 3 in Fig. 2.
More specifically, the agent first initializes the weights of
the critic network Q(s,a|0?) and actor u(s|0*) as 69 and
0", respectively (Line 1), and the target networks are cloned
from the critic and actor networks (Line 2). Then a batch
of data is sampled from the replay memory R as the input
parameters of the A-DDPG model (Line 3). During the m-
th episode (Line 4), in order to increase the randomness of
the training process and the coverage of learning, the model
adds noise N to the selected action a; (Line 5), and the agent
receives the first state sg of the current environment (Line 6).
During the t-th time-slot (Line 7), A-DDPG adds exploration
noise to the selected action a; = pu(s¢|60*) + N; based on
the current policy (Line 8). Next, the agent executes action
a; and transfers to next state s;,y;, rewards 7, and decides
whether to terminate the state (Line 9). Subsequently, the agent
stores the quintuple (s;, a;, 7, S¢+1) into the experience replay
B (Line 10). The next step is to update the actor network
and the critic network. First we need to prepare significant
training data: (1) calculate the predicted baseline y; (Line 11)
and (2) calculate the policy p(s:|0") + N; and Q baseline
Q(s¢,a4/69). Drawing on the DDPG method, the value loss
function is the mean square error (MSE) of the predicted
baseline and the actual baseline according to (17) (Line 12).
Afterward, gradient descent (18) is used to train the neural

network (Line 13), and the weight parameters of the network
are updated regularly (Line 14). If s,y is the terminal state,
the current round of iteration is finished, otherwise, it goes to
Line 8. The total number of episodes is denoted by M and
each training episode contains 7" training rounds. The above
procedures iterate until convergence or reaching the predefined
episode bound.

¢) Running process: The whole running process of the
A-DDPG algorithm mainly consists of three parts: Step 4, Step
5, and Step 6 in Fig. 2.

In Step 4, the well-trained A-DDPG model is selected, and
the long-term cumulative reward of the action is preliminarily
evaluated by inputting the current state. The purpose is to
avoid operations with poor performance and statistically select
operations that may achieve good performance to optimize the
solution space size. In Step 5, the performance of each action
in the optimized solution space, based on the predicted value
in the simulated environment, is evaluated to obtain rewards,
and the results are recorded in the database to further update
the A-DDPG model. In Step 6, the action with greatest reward
is performed in the physical network.

IV. PERFORMANCE EVALUATION
A. Simulation Settings

The simulation experiments are all implemented on an Intel
(R) Core (TM) i7 Windows 10 64-bit system. Moreover,
the network parameters, computing capabilities, and traffic
requests are randomly generated as following, which is similar
to existing works [23], [24]. The basic environment of the ex-
periment is set up to construct a network computing platform
composed of 50 servers, each with [1,100] units of capacity.
For each link, its capacity is randomly assigned from the
range [2,4] Gb/s and its delay takes value in [30, 50] ms. We
simulate [10, 100] requests and each request requires an SFC
consisting of 3 to 6 different VNFs (i.e., firewall, NAT, IDS,
load balancer, WAN optimizer and flow monitor) according to
[25]. For the unit cost of Egs. (4), (5), (6), we set ®°P = 0.2,
®d¢ = (.4, and " = 0.1.

We set our attention-based deep neural network structure
with an input layer, an output layer, and 3 hidden layers. The 3
hidden layers comprise an attention layer and 2 fully connected
layers. The number of hidden nodes of the 2 fully connected
layers is 32 and 16, respectively. The hyperparameters for DRL
are shown in Table II, and the target network parameters are
updated once every 200 step.

TABLE 11
HYPERPARAMETERS FOR DRL.

Replay buffer size | 10000 Learning rate 0.1,0.01,0.001
Hidden nodes 32,64 | Number of episodes 3000
Discounted factor 0.8 Hidden layer 3

The implementation of the A-DDPG algorithm is divided
into three modules. The first is the construction of the un-
derlying network environment, including the simulation of

network topology nodes and link resources. Next, the request
generation module. Each request contains an SFC and each
SFC contains 3 to 6 VNFs. Finally, the DRL algorithm module
runs the A-DDPG algorithm. Once the agent is well-trained
after convergence, it can make the right decision for the VNF-
PR problem.

We compare our A-DDPG method with three counterpart
algorithms: DDPG, NFVdeep [26], and Q-learning.

DDPG: DDPG is a model-free DRL algorithm to solve the
VNF-PR problem. The difference with A-DDPG is that it does
not add an attention mechanism. For each request (&, F, D) €
R, the DDPG algorithm tries to place f € F,. on node n €
N only considering its current remaining resource capacity,
regardless of the neighbors’ states. Moreover, it considers actor
and critic networks with two fully connected layers, in which
the number of nodes is 32 and 16, respectively. Meanwhile,
we set a = 0.01, the batch size is 64 and v = 0.8, which is
consistent with the parameter settings of A-DDPG.

NFVdeep: NFVdeep is a state-of-the-art method for VNF-
PR problems. NFVdeep methods are a type of RL technique
that relies upon optimizing parameterized policies concerning
the expected return (long-term cumulative reward) by gradient
descent. The policy gradient of the parameter 6 is defined as:

o (6) = (aga(f) . ag@ie))

where the parameter 0 is updated as 0,11 = 0; +a /o, J (6;),
« is the learning rate and n is the number of neurons. During
the training process, the agent processes one VNF of SFC in
each MDP state transition. Then the reward for each state s is
calculated, and the physical network gives the reward to the
NFVdeep agent. Subsequently, the NFVdeep agent is trained
for updating the policy circularly until the reward converges.

Q-learning: Q-learning is an off-policy RL method where
the agent queries the Q-value table to make decisions. For
each request r(£, F, D) € R, the Q-learning algorithm tries
to place f € F, on a well-resourced node n € N, such
that the total delay of r shall be less than D. Afterward, the
agent calculates the cumulative reward by the utility function
of the network. We set the learning rate to 10~2 and halved it
every 200 episodes. Meanwhile, we set v = 0.8 to ensure the
best performance of the algorithm. The Q-value is updated as
follows:

19)

Q(s1,00) ¢ Q (s, a¢) + afr +ymax Q (se41, arr1) = Q (1, a1)]
" (20)
where s represents the state at a certain moment, a; indicates
the action taken at that moment, @ (s¢,a;) denotes the Q-
value corresponding to the (state, action) pair, r reflects the
reward function, @Q (s¢4+1,at+1) represents the state transition
function, and a;4; denotes the action corresponding to the
next state.
For the above three methods, we compare their network
utility, delay, and running time. Among them, the network
utility reflects the resource occupancy of the nodes and links

14000 50

\ R
W‘WNVW“&WW WS A%
12000 ‘ "
10000 ‘ e NEANR e PN i KNP RNKH g
/ :

8000

Reward

6000 - |
I —~*—a=10"

5
000 || “Fa=10"

a=10"

2000

14000

——a=10" —o—batch size = 32
=102 12000 —4—batch size = 64
3 batch size = 128
a=10

10000

8000

Loss

6000
4000

2000 /4§

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

- /o <t 5 Pl o
200 400 600 800 1000 1200 1400 1600 1800 2000 0
Episode

Episode

(a) The reward returned by A-DDPG under dif- (b) The loss value of the A-DDPG under different (c) The loss value of A-DDPG with different

ferent learning rates. learning rates.

12000

batch sizes.

10*

A n s A e Ay AL

10000 SMV\WWN, Ay v Ry T
I

[A AL b
H P e

11000

—~—A-DDPG

—v—DDPG

—=—NFVdeep
Q-learning

10000 |

9000

8000 1| &

Cost

7000 {‘ \
|

|/
E \
2 6000 ‘ [
z /
= \‘ #
4000 }
——A-DDPG
2000} | DDPG —— =107, batch size = 64
| —=—NFVdeep
! Q-learning

—a =107, batch size = 32

a

=107, batch size = 64

6000] — - N A a5
| Meara grebeal, | . hglyeamae]

5000

|
“@mmmmxﬁz:

4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 500 1000 1500

pisode

(d) The reward returned by all the algorithms.

Episode

(e) The influence of learning rate and batch size

2500 a0

2000 2500 3000

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

(f) The cost returned by all the algorithms.

on the utility for A-DDPG.

m
8
8

10000
I A-DDPG sooo| [EA-DDPG
o [DDPG I DDPG
I NFVdeep 8000 | NFVideep
£ EQ-learning 7000 |[EJQ-learning
7 500 6000
g z
400 = 5000
= 3
s
8 40 4000
3000
200
2000
100 1000
0 L 0

20

20

30
Number of servers

40 50

30

Number of servers

600

—v—A-DDPG

—~—DDPG

—&—NFVdeep
Q-learning

Running time (s)
o
g
S

40 40 50 60 70

Number of request

80 90 100

(g) The influence of the number of servers on the (h) The influence of the number of servers on the (i) The influence of the number of servers on the

delay for all the algorithms.

utility for all the algorithms.

running time for all the algorithms.

Fig. 3. Performance comparison of A-DDPG, DDPG, NFVdeep, and Q-learning.

of the network according to the Eq. (1), and the total delay is
calculated by the sum of each path and node processing delay
to reflect the network utility of VNF placement and traffic
routing.

B. Simulation Results

Fig. 3(a) shows reward returned by A-DDPG under different
learning rates (0.1, 0.01 and 0.001). The placement and routing
of all VNFs are completed in each training episode. It can be
seen from Fig. 3(a) that the learning rate affects the value
of reward in the algorithm’s training progress. The reason is
that the learning rate represents the amount that the weights
are updated (a.k.a. the step size) during training. Smaller
learning rates may lead to a slower weight update, so more
training episodes are needed to achieve convergence of reward,
whereas larger learning rates cause rapid changes and require
fewer training episodes. According to our simulation results,
when the learning rate is 0.01, A-DDPG achieves the best
performance in terms of reward. Therefore, we will take the

best learning rate for comparison with other algorithms. Its
learning speed is acceptable, and it leads to faster convergence
of reward function.

Fig. 3(b) shows the loss value of the A-DDPG method under
different learning rates (0.1, 0.01 and 0.001). It can be seen
from Fig. 3(b) that the learning rate affects the loss value in the
algorithm’s training step. The reason is that if the learning rate
is too large, the loss function may directly exceed the global
optimization of the learning process, whereas a small learning
rate can cause the process to get stuck. When the learning rate
is small, the changing speed of the loss function is slow. In this
context, it will greatly increase the convergence complexity of
the network, and the loss function is easy to be trapped in the
local minima. Our simulation shows that the learning rate of
0.01 provides the best performance for A-DDPG.

Fig. 3(c) shows the loss of A-DDPG with different batch
sizes, where the batch sizes are 32, 64, and 128, respectively.
As can be seen from Fig. 3(c), as the episodes increase, the
batch size will affect the value of the loss. We use batch

gradient descent in the simulation to complete the iteration,
which processes a portion of the samples at a time. A small
portion of the samples will bring a large variance, which
will cause the loss function to oscillate and slow down the
convergence speed of the algorithm, especially when the
network is complex. If the sample size is too large, the gradient
estimation will be more accurate and stable, which may cause
the neural network to converge to a poor local optimal solution
point. Therefore, the batch size cannot be set too small or too
large. According to our simulation results, the batch size can
be set to 64. In addition, we find that after a series of shocks,
the loss value in Fig. 3(c) can always be stable near 0 within a
certain range. This indicates that our proposed algorithm can
achieve convergence in VNF-PR.

Fig. 3(d) shows the reward returned by all the algorithms.
As the episodes increase, the value of the reward gradually
converges. In particular, we find that the A-DDPG algorithm
is stable after being trained for 200 episodes. Subsequently,
the reward value of A-DDPG somewhat fluctuates. On the
one hand, this is due to the random generation of network
requests, and the reward value is related to the completion of
the network request. On the other hand, when poor samples
are selected, one may end up in a local optimum, which
results in a low reward value. It can be observed from Fig.
3(d) that Q-learning and NFVdeep always return the lowest
reward because they do not directly use the deep network
to select actions. DDPG performs better due to its capability
to select actions directly. However, it is not as good as A-
DDPG, since it fails to capture the neighbors’ states. The A-
DDPG algorithm can always achieve the highest reward after
200 episodes of training among the simulated algorithms. The
reason is that the A-DDPG agent takes action by additionally
paying attention to the states of neighbors, and the correct
behavior enables the agent to obtain positive rewards faster
during training, which accelerates the learning process. The
results from the training process imply that the A-DDPG agent
is more intelligent than other agents.

Fig. 3(e) depicts the influence of learning rate and batch size
on the utility for A-DDPG. As the A-DDPG model iterates,
the utility gradually converges towards a maximum where the
model optimizes the weights. The utility value of o = 0.01 is
higher than that of o = 0.001. We analyze that this is because
the higher learning rate may miss the global optimization of
the learning process, so it will cause the network to converge
to a local optimum and obtain a low utility. Moreover, the
speed of convergence when batch size = 64 is higher than
the value when batch size = 32. This is because, as the batch
size increases, the data processing speed becomes faster, which
can reduce training time and enhance system stability.

Fig. 3(f) shows the cost returned by all the algorithms.
As can be seen from Fig. 3(f), the training efficiency of Q-
learning is lower than that of A-DDPG. More specifically,
the cost of NFVdeep fluctuates at 5800 after 200 episodes.
The cost of Q-learning fluctuates at 6000 after 1800 episodes.
The cost of A-DDPG stabilizes after 100 episodes with slight
fluctuations at 4000. Given these points, A-DDPG converges

faster than NFVdeep and Q-learning. This is because, during
initial training, VNFs are randomly placed on the different
servers, which incurs large operation and transmission costs.
Through the training of Q-table and neural networks, Q-
learning and A-DDPG agents can reduce unnecessary costs
through training results. However, due to the use of neural
networks, the A-DDPG agent is conducive to expressing
complex network states. Compared with the discrete strategy
in NFVdeep, A-DDPG can directly optimize the strategy (e.g.,
request rate) to meet the time-varying network states. Under
the same conditions, it can process more network requests and
reduce cost, thereby improving the processing capacity of the
network. The result shows that an A-DDPG agent is more
intelligent since it can achieve lower costs.

Fig. 3(g) shows the influence of the number of servers
on the delay for all the algorithms. As shown in Fig. 3(g),
the delay shows a downward trend as the number of servers
increases. With the increase in the number of servers, it guar-
antees enough resources and applicable paths to accommodate
requests. Our A-DDPG algorithm achieves a lower delay
compared with the other three approaches. This is because,
as the number of servers increases, the topology becomes
more complicated. The placement and routing of VNFs us-
ing NFVdeep and Q-learning can easily cause the server to
fall into a local bottleneck due to performance degradation,
whereas A-DDPG adds incentives for delay optimization in the
reward function. The value of the reward increases more and
more as delay decreases. Therefore, the node with the smaller
delay will be selected to deploy the VNF in the strategic
choice.

Fig. 3(h) shows the influence of the number of servers
on the utility for all the algorithms. As shown in Fig. 3(h),
A-DDPG achieves higher utility than the others. It reflects
the superiority of A-DDPG in expressing decision-making in
complex network environments. A-DDPG can obtain better
utility under time-varying network states compared with the
DDPG algorithm. NFVdeep performs well in an environment
with 30 servers. Q-learning is not sensitive to the number of
servers. In short, the A-DDPG method can attain greater utility
by adopting an adaptive selection policy in a complex network
environment.

Finally, we compare the running time performance of all
the algorithms. As seen in Fig. 3(i), the running time of Q-
learning is significantly higher than those of A-DDPG, DDPG,
and NFVdeep. In addition, when there are more than 80
requests, the running time of Q-learning increases rapidly.
This is because when there are fewer requests, the servers
have numbers of capacity available on-demand, and there exist
more feasible solutions for the VNF-PR problem to achieve
the best performance. However, with an increase in resource
demands, the state space and action space in the Q-table
greatly increase. In that case, finding the optimal strategy
by looking up the table becomes difficult, and considering
the complex calculations of nodes and links in large NFV
networks, it takes more time to find the optimal strategy in
large networks. Although A-DDPG and DDPG spend some

more time to train the neural networks, after the training
is completed and deployed, it only needs to use the well-
trained neural networks for reasoning. A-DDPG has more
running time than DDPG. This is because A-DDPG’s neural
network architecture has one more attention layer than DDPG,
which causes a slight increase in running time. Therefore, A-
DDPG consumes reasonable running times due to the powerful
representation capabilities of the neural networks.

V. RELATED WORK

Combinatorial optimization theory for NFV: The VNF-
PR problem has been studied for different objectives [27], such
as cost minimization [28], [29], performance improvement
[30], [31], and utility maximization [32]-[34]. In most studies,
VNF placement, either alone or jointly with traffic routing, is
investigated by using combinatorial optimization theory (e.g.,
primal-dual, rounding, Markov approximation). For instance,
Ma et al. [35] target the VNF placement problem to make the
load balance of the traffic at base stations. They subsequently
solve the problem when the flow path is predetermined, and
propose a traffic and space aware routing heuristic for a non-
ordered or ordered middlebox set. Feng et al. [36] present
a VNF placement and traffic routing model to minimize
the network cost. The authors formulate the problem as an
ILP and then devise an approximate algorithm to effectively
consolidate flows into a limited number of active resources.
A Minimum-Residue heuristic is presented in [37] for VNF
placement in a multi-cloud scenario with constraints of deploy-
ment cost. Sampaio et al. [38] study how to achieve load bal-
ancing in networks to reduce the number of overloaded links
in NFV/SDN-enabled networks. However, the aforementioned
studies do not consider QoS, such as the delay of the data
flow in SFC. Gao et al. [28] propose a cost-efficient scheme to
address the VNFs placement problem in public cloud networks
with the goal of low cost and latency. Cziva et al. [39]
study how to use the optimal stopping theory to place VNFs
under the edge cloud to minimize the total delay expectation.
However, the authors in [39] assume that one VNF is sufficient
to meet the users’ requirements. Nevertheless, the above work
by applying combinatorial optimization theory cannot work
well with the real-time dynamic network variations [26].

DRL for NFV: Some studies solve the VNF-PR problem by
using DRL. For instance, Quang et al. [40] solve the VNF-PR
or VNF forwarding graph embedding problem in multiple non-
cooperative domains by jointly considering the delay and un-
derlying infrastructure constraints. They first introduce a DRL
framework in which each domain determines the bidding price
of using its resources selfishly. After that, the final decision is
made by the owner of VNF-PR by executing a Cost-based
First Fit (CFF)-based heuristic algorithm. Xiao et al. [26]
present an adaptive deep reinforcement learning approach to
automatically deploy SFCs for the optimization of throughput
and operation cost. Tong et al. [41] propose a Gated Recurrent
Units (GRU)-based traffic prediction model and place VNF
instances in advance based on the prediction result. They apply
a DRL algorithm called Asynchronous Advantage Actor-Critic

(A3C) to train the agent and then obtain the optimal strategy.
Manabu et al. [42] propose an accelerated reinforcement learn-
ing method to shorten the delivery time of services. According
to [42], the reinforcement learning agent learns the optimal
placement strategy of VNFs according to the state value
function and simulates the model in various environments.
Sun et al. [43] combine the DRL and GNN to solve the
VNF placement problem with the minimum deployment cost.
However, the methods in [26], [40]-[43] ignore the end-to-end
delay, especially the processing delay. Gu et al. [44] minimize
the deployment cost based on geographic location and the
SFC processing delay, and jointly solve the VNF placement
and routing problem using a DRL algorithm. However, the
authors in [44] suppose that all VNF instances have already
been placed on network nodes, so the VNF-PR problem is
simplified to the deployment of paths and allocation of traffic
load on the links. Nevertheless, none of the aforementioned
works consider the impact of surrounding nodes’ resources
on network states. In fact, the importance of neighbors to the
learning agent is distinguishable according to their remaining
resources in the DRL model. The attention mechanism enables
to focus on neighbor nodes with sufficient resources and
contributes to the generation of neighbor interaction behaviors.
Li et al. [45] make a preliminary attempt to solve the VNF
placement problem with the combination of attention based
sequence to sequence model and RL algorithm, the RL agent
incorporates an entropy maximization strategy and the goal is
formalized as optimizing the power consumption of the service
chain. However, the [45] assumes that the problem model is
only for star topology with 10 nodes, which is not always
the case in practice. Our proposed A-DDPG solves the VNF-
PR problem by applying the attention mechanism to the DRL
architecture, where uses the Actor-Critic network structure.

VI. CONCLUSION

The main focus of this paper is the VNF-PR problem
in NVF-enabled networks, which is to place each requested
VNFs on network nodes and effectively route traffic through
these nodes. To solve the VNF-PR problem, we present a
DRL framework with an attention mechanism, called A-
DDPG, which consists of three processes: observation process,
training process, and online running process. In the observation
process, the agent first obtains historical samples through
observation for training. Second, the agent updates the network
parameters according to the historical samples and reduces the
random exploration rate in the training process. Finally, the
agent selects the trained network model and then executes the
action of the maximum reward to get the optimized VNF-PR
policy. By introducing an attention mechanism, we can focus
on more critical information, such as the state of neighbors, to
reduce the attention to other unnecessary nodes and improve
the training efficiency of the model. Via extensive simulations,
we find that our proposed algorithm A-DDPG can outperform
the state-of-the-art in terms of network utility, delay, and cost.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

REFERENCES

M. S. Bonfim, K. L. Dias, and S. F. Fernandes, “Integrated NFV/SDN
architectures: A systematic literature review,” ACM Computing Surveys
(CSUR), vol. 51, no. 6, pp. 1-39, 2019.

H. Ren, Z. Xu, W. Liang, Q. Xia, P. Zhou, O. F. Rana, A. Galis, and
G. Wu, “Efficient algorithms for delay-aware NFV-enabled multicasting
in mobile edge clouds with resource sharing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 9, pp. 2050-2066, 2020.
M. Scazzariello, L. Ariemma, G. Di Battista, and M. Patrignani, “Mega-
los: A scalable architecture for the virtualization of network scenarios,”
in IEEE NOMS, 2020, pp. 1-7.

L. Ruiz, R. Duran, 1. de Miguel, N. Merayo, J. Aguado, P. Fernandez,
R. Lorenzo, and E. Abril, “Comparison of different protection schemes
in the design of VNF-mapping with VNF resiliency,” in /JEEE ICTON,
2020, pp. 1-4.

S. Yang, F. Li, S. Trajanovski, R. Yahyapour, and X. Fu, “Recent
advances of resource allocation in network function virtualization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
295-314, 2021.

L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability
driven VNF placement in a MEC-NFV environment,” in IEEE GLOBE-
COM, 2018, pp. 1-7.

D. T. Nguyen, C. Pham, K. K. Nguyen, and M. Cheriet, “Placement
and chaining for run-time IoT service deployment in edge-cloud,” IEEE
Transactions on Network and Service Management, vol. 17, no. 1, pp.
459-472, 2019.

Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in JEEE ICDCS, 2017, pp. 731-741.

Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, “Virtual
function placement for service chaining with partial orders and anti-
affinity rules,” Networks, vol. 71, no. 2, pp. 97-106, 2018.

J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in
geo-distributed cloud system,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 10, pp. 2179-2192, 2018.

G. Sallam and B. Ji, “Joint placement and allocation of virtual network
functions with budget and capacity constraints,” in IEEE INFOCOM,
2019, pp. 523-531.

M. Golkarifard, C. F. Chiasserini, F. Malandrino, and A. Movaghar,
“Dynamic VNF placement, resource allocation and traffic routing in
5G,” Computer Networks, vol. 188, p. 107830, 2021.

0. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “Online and batch
algorithms for VNFs placement and chaining,” Computer Networks, vol.
158, pp. 98-113, 2019.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference on
Artificial Intelligence, 2018.

S. Guo, Y. Dai, S. Xu, X. Qiu, and F. Qi, “Trusted cloud-edge network
resource management: DRL-driven service function chain orchestration
for 10T,” IEEE IoT, 2019.

H. R. Khezri, P. A. Moghadam, M. K. Farshbafan, V. Shah-Mansouri,
H. Kebriaei, and D. Niyato, “Deep reinforcement learning for dynamic
reliability aware NFV-based service provisioning,” in /[EEE GLOBE-
COM, 2019, pp. 1-6.

P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “On using deep
reinforcement learning for VNF forwarding graphs placement,” in /EEE
NoF, 2020, pp. 126—-128.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

R. Z. Courville, Ruslan Salakhudinov and Y. Bengio, “Show, attend and
tell: Neural image caption generation with visual attention,” Interna-
tional Conference on Machine Learning, 2015.

C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE, vol. 5, no. 1, pp. 3-55, 2001.

J. S. Chase, R. P. Doyle, and S. D. Ims, “Multi-tier service level
agreement method and system,” 2006.

S. Verbrugge, D. Colle, M. Pickavet, P. Demeester, S. Pasqualini,
A. Iselt, A. Kirstadter, R. Hu Isermann, F.-J. Westphal, and M. Jager,
“Methodology and input availability parameters for calculating opex
and capex costs for realistic network scenarios,” Journal of Optical
Networking, vol. 5, no. 6, pp. 509-520, 2006.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang, “On
efficient offloading control in cloud radio access network with mobile
edge computing,” in IEEE ICDCS, 2017, pp. 2258-2263.

K. Gardner, S. Borst, and M. Harchol-Balter, “Optimal scheduling for
jobs with progressive deadlines,” in IEEE INFOCOM, 2015, pp. 1113—
1121.

M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
NFV-SDN, 2015, pp. 191-197.

Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: Adaptive online service function chain deployment with
deep reinforcement learning,” in Proceedings of the International Sym-
posium on Quality of Service, 2019, pp. 1-10.

G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “VNF-AAPC:
Accelerator-aware vnf placement and chaining,” Elsevier Computer
Networks, p. 107329, 2020.

T. Gao, X. Li, Y. Wu, W. Zou, S. Huang, M. Tornatore, and B. Mukher-
jee, “Cost-efficient VNF placement and scheduling in public cloud
networks,” IEEE Transactions on Communications, 2020.

M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-
to-end performance-based autonomous VNF placement with adopted re-
inforcement learning,” IEEE Transactions on Cognitive Communications
and Networking, 2020.

J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement
via deep reinforcement learning in SDN/NFV-enabled networks,” IEEE
J-SAC, vol. 38, no. 2, pp. 263-278, 2019.

L. Dinh-Xuan, C. Popp, V. Burger, F. Wamser, and T. HoBfeld, “Impact
of VNF placements on qoe monitoring in the cloud,” International
Journal of Network Management, vol. 30, no. 3, p. €2053, 2020.

J.-J. Kuo, S.-H. Shen, H.-Y. Kang, D.-N. Yang, M.-J. Tsai, and W.-
T. Chen, “Service chain embedding with maximum flow in software
defined network and application to the next-generation cellular network
architecture,” in /JEEE INFOCOM, 2017, pp. 1-9.

L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelligent
VNF orchestration and flow scheduling via model-assisted deep rein-
forcement learning,” /IEEE J-SAC, vol. 38, no. 2, pp. 279-291, 2019.
H. A. Shah and L. Zhao, “Multi-agent deep reinforcement learning based
virtual resource allocation through network function virtualization in
internet of things,” IEEE IoT, 2020.

W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware
placement of interdependent NFV middleboxes,” in IEEE INFOCOM,
2017, pp. 1-9.

H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approx-
imation algorithms for the NFV service distribution problem,” in /JEEE
INFOCOM, 2017, pp. 1-9.

D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad, “Multi-
cloud distribution of virtual functions and dynamic service deployment:
Open ADN perspective,” in 2015 IEEE International Conference on
Cloud Engineering, 2015, pp. 299-304.

L. S. Sampaio, P. H. Faustini, A. S. Silva, L. Z. Granville, and
A. Schaeffer-Filho, “Using NFV and reinforcement learning for anoma-
lies detection and mitigation in SDN,” in IEEE ISCC, 2018, pp. 00432—
00437.

R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal VNF placement at the network edge,” in IEEE INFOCOM, 2018,
pp. 693-701.

P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, “Multi-
domain non-cooperative VNF-FG embedding: A deep reinforcement
learning approach,” in JEEE INFOCOM WKSHPS, 2019, pp. 886-891.
R. Tong, S. Xu, B. Hu, J. Zhao, L. Jin, S. Guo, and W. Li, “VNF
dynamic scaling and deployment algorithm based on traffic prediction,”
in IEEE IWCMC, 2020, pp. 789-794.

M. Nakanoya, Y. Sato, and H. Shimonishi, “Environment-adaptive sizing
and placement of nfv service chains with accelerated reinforcement
learning,” in /IEEE IM, 2019, pp. 36-44.

P. Sun, J. Lan, J. Li, Z. Guo, and Y. Hu, “Combining deep reinforcement
learning with graph neural networks for optimal vnf placement,” IEEE
Communications Letters, 2020.

L. Gu, D. Zeng, W. Li, S. Guo, A. Zomaya, and H. Jin, “Deep
reinforcement learning based vnf management in Geo-distributed edge
computing,” in IEEE ICDCS, 2019, pp. 934-943.

S. Li, S. Zhang, L. Chen, H. Chen, X. Liu, and S. Lin, “An attention
based deep reinforcement learning method for virtual network function
placement,” in [EEE ICCC, 2020, pp. 1005-1009.

