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Abstract—The efficacy of Network Function Virtualization (NFV) depends critically on (1) where the virtual network functions (VNFs)
are placed and (2) how the traffic is routed. Unfortunately, these aspects are not easily optimized, especially under time-varying
network states with different QoS requirements. Given the importance of NFV, many approaches have been proposed to solve the VNF
placement and Service Function Chaining (SFC) routing problem. However, those prior approaches mainly assume that the network
state is static and known, disregarding dynamic network variations. To bridge that gap, we leverage Markov Decision Process (MDP) to
model the dynamic network state transitions. To jointly minimize the delay and cost of NFV providers and maximize the revenue, we
first devise a customized Deep Reinforcement Learning (DRL) algorithm for the VNF placement problem. The algorithm uses the
attention mechanism to ascertain smooth network behavior within the general framework of network utility maximization (NUM). We
then propose attention mechanism-based DRL algorithm for the SFC routing problem, which is to find the path to deliver traffic for the
VNFs placed on different nodes. The simulation results show that our proposed algorithms outperform the state-of-the-art algorithms in
terms of network utility, delay, cost, and acceptance ratio.
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1 INTRODUCTION

N ETWORK functions (NFs) such as firewalls and load
balancers have been implemented on physical devices,

which are called middleboxes. Although such middleboxes
are designed to effectively improve network security and
performance, these devices are costly, lack flexibility, and
are difficult to operate. Network Functions Virtualization
(NFV) has emerged as an innovative technology, which can
address these challenges by decoupling network functions
from dedicated hardware and implementing them as Virtual
Network Functions (VNFs) [2]. Recently, NFV attracts a
great deal of interest from the networking community as
this technology shows great potential to promote openness,
innovation, flexibility, and scalability in the network [3], [4].
To build more complex services, the concept of Service Func-
tion Chaining (SFC) can be used, where a series of VNFs
must be processed in a predefined order to collectively
deliver a specific service. Therefore, one important issue is
to determine where to place the VNFs in a predefined order
to meet the service requirements. Considering about the
capacitated network resources, the main goal is to maximize
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the network utility. Network Utility Maximization (NUM) is
therefore a mathematical framework for allocating network
resources so that the total utility is maximized subject to
network resource constraints [5]. While successful VNF
placement provides a simple route for the SFC, new issues
arise with it. For example, in an NFV-enabled environment,
multiple VNFs will be placed in different locations. There-
fore, another important issue is the SFC routing problem,
which is defined as how to find a path from the source to
the destination with the goal of maximizing the number
of accepted requests. The path during an SFC must pass
through all the required VNFs in order to meet the band-
width and delay requirements. In this paper, we refer to the
VNF placement and SFC routing problem as the VNF-PR
problem. The overarching objective of the VNF-PR problem
is to achieve NUM. Therefore, cost and QoS (e.g., delay)
schemes need to be jointly considered, which will lead to
better user experience and higher profitability.

To solve the VNF placement and SFC routing problem,
existing work resorts to linear programming [6] or pro-
poses heuristic or approximate methods [7] to transform
the problem into some well-known NP-hard problems [8]
such as the knapsack problem. Although these approaches
can solve the VNF placement and SFC routing problem to
some extent, they usually use prior knowledge (e.g. delay,
bandwidth, and demand changes) to develop effective VNF
placement and SFC routing strategies. For this reason, these
approaches are not feasible in an NFV-enabled environment
with dynamic network states, as the VNF placement and
SFC routing problem needs to be rehandled once the net-
work states have varied significantly. For example, exist-
ing work formulates a one-shot optimization problem in
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a dynamic environment [9]. However, the existing work
does not have the potential for positive long-term returns
in response to dynamic network environments and leads
to excessive waste of resources and performance degra-
dation due to irrational allocation. Besides, existing work
requires multiple iterations to solve the VNF placement and
SFC routing problem, which leads to high computational
complexity and resource overheads. Thus existing efforts
cannot effectively solve the complex VNF placement and
SFC routing problems in dynamic environment.

Another line of work applies (Deep) Reinforcement
Learning (DRL) [10] to solve the VNF placement and SFC
routing problem, since DRL can capture the dynamic net-
work state transitions and user demands. More specifically,
an RL agent interacts with the dynamic NFV-enabled envi-
ronment by implementing placement and routing strategies.
The RL agent then continuously optimizes the strategies
based on the reward values (e.g., delay, capacity, and band-
width) fed back from the environment. Nonetheless, RL
methods still suffer from the impractical and inefficient
issues brought by large networks. On the contrary, deep
neural networks can be applied to high-dimensional state
space. Different from these works, in this paper we adopt
Deep Deterministic Policy Gradient (DDPG) [11] algorithm
to deal with the high-dimensional and time-varying net-
work state and complex networks environment. The reason
is that the DDPG algorithm replaces the value function with
a deep network that can cope with high-dimensional input
states. Moreover, the DDPG algorithm contains a policy
network to generate actions, which can be applied to the
output of continuous actions and large action space. We are
motivated to leverage the feature of deep neural networks
and introduce a Markov Decision Process (MDP) to capture
the dynamic network state transitions and process them
within a DRL architecture. A DRL agent usually does not
pay equal attention to all available placement nodes. For
example, an agent typically selects the current action based
on information with a higher level of cognitive skill and
ignores other perceptible information.

In this paper, we first study the VNF placement problem
assuming that a complete graph is adopted as a problem in-
put. Then, we introduce the concept of attention mechanism,
which is widely used in the image processing problem [12]
and machine translation [13] to model the agent’s action for
DDPG. We find that during the training process of DDPG,
the attention mechanism will automatically focus on the
feasible neighbor node that may affect the agent’s selection
behavior. It ultimately helps to reduce the attention to other
unnecessary nodes and improve the training efficiency of
the model. With this motivation, we design a customized
attention mechanism-based DDPG to train our DRL model
as in our previous work [1]. Subsequently, we additionally
study the SFC routing problem, which is to find a path
from a source to a destination to maximize the number of
accepted requests. In particular, we adopt a pointer network,
which is a simplified structure of an attention mechanism
that uses a softmax probability distribution as a “pointer” to
the node (i.e., the next-hop routing policy) with the highest
weight. In reality, the service provider can first solve the SFC
routing problem via the proposed algorithm for different
node pairs in the network. Those returned solutions serve

as the input for the VNF placement problem. At last, the
service provider can solve the VNF placement problem by
using the proposed solutions. This is one possible scenario
of how a practitioner can jointly solve the VNF placement
and SFC routing problem and apply our proposed solutions
in sequential order. The main contributions of this paper are:

• We first formulate the VNF placement problem as an
optimization model and establish a utility function
aiming to solve a trade-off between revenue and cost.

• We propose a novel Attention mechanism-based
Deep Deterministic Policy Gradients (A-DDPG)
framework to solve the VNF placement problem,
using the Actor-Critic network structure, in which
both the Actor and Critic networks adopt double
networks (namely the main network and the target
network).

• We then propose an Actor-Critic-based learning algo-
rithm called P-AC to solve the SFC routing problem
using the Pointer network structure. P-AC uses atten-
tion as a “pointer” to select the node with the highest
probability as the next-hop node for path selection at
each time.

• Through extensive simulations, we show that our
proposed algorithms outperform the state-of-the-art
algorithms in terms of network utility, delay, cost,
and acceptance ratio.

The remainder of this paper is organized as follows.
Section 2 describes the related work. Section 3 defines the
VNF placement problem and we devise the A-DDPG algo-
rithm to solve the VNF placement problem in Section 4. The
proposed A-DDPG algorithm is evaluated via simulations
in Section 5. Then, we define the SFC routing problem and
devise the P-AC algorithm to solve the SFC routing problem
in Section 6. We also provide the simulation results in this
section. Finally, we conclude in Section 7.

2 RELATED WORK

2.1 Combinatorial optimization theory for VNF place-
ment and/or SFC routing

VNF Placement: The VNF placement problem has been
studied with the aim of cost minimization [14], performance
improvement [15], and utility maximization [16]. For in-
stance, Li et al. [17] leverage a correlation-based greedy
algorithm to solve the VNF placement problem in the cloud
data center. A Minimum-Residue heuristic is presented in
[18] for VNF placement in a multi-cloud scenario with con-
straints of deployment cost. Furthermore, Cziva et al. [19]
study how to use the optimal stopping theory to place
VNFs under the edge cloud to minimize the total delay
expectation. However, the authors in [19] assume that one
VNF is sufficient to meet the users’ requirements.

SFC routing: Feng et al. [20] formulate the routing
problem as an Integer Linear Programming (ILP) and then
devise an approximate algorithm to effectively consolidate
flows into a limited number of active resources. By using
the resource-aware algorithm, Hong et al. [21] formulate
the SFC routing problem as a Binary Integer Programming
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(BIP) model aiming to minimize the resource consumption
costs of flows with SFC requests. Besides, Wang et al. [22]
formalize the SFC routing problem by jointly optimizing
the update delay and the load of VNF. Then they design an
algorithm based on randomized rounding to solve it with a
bounded approximate ratio.

VNF placement and SFC routing: Ma et al. [23] solve
the placement and routing problem based on the heuristics
algorithm for the general scenario of a non-ordered or
ordered middlebox set. By using a primal-dual-based algo-
rithm, a system model is designed in [24] for accomplishing
the VNF placement and SFC routing in practical operator
Data Center Networks (DCNs). Yang et al. [25] propose an
efficient randomized rounding approximation algorithm for
VNF placement and SFC routing, to minimize the maximum
link load ratio. Gao et al. [14] propose a cost-efficient scheme
to address the VNF placement and SFC routing problem
in public cloud networks with the goal of low cost and
delay. Nevertheless, the above work utilizes combinatorial
optimization theory that is often slow and impractical with
the dynamic network variations.

2.2 DRL for VNF placement and/or SFC routing
VNF placement: There are also some studies that solve
the VNF placement problem by using DRL. For instance,
Manabu et al. [26] propose an accelerated reinforcement
learning method to shorten the delivery time of services.
According to [26], the reinforcement learning agent learns
the optimal placement strategy of VNFs according to the
state value function and simulates the model in various
environments. Su et al. [27] combine the DRL and GNN
to solve the VNF placement problem with the minimum
deployment cost. Akbari et al. [28] minimize cost and age
of information in terms of network resources and solve the
VNF placement problem. However, the methods in [26]–[28]
ignore the end-to-end delay, especially the processing delay,
as we do in this paper.

SFC routing: Pei et al. [29] formulate the SFC routing
problem as a BIP model aiming to minimize the end-to-
end delay for each SFC request. Then, a novel two-phase
algorithm based on deep learning technology is proposed
to handle the SFC routing problem. Gu et al. [30] adopt a
deep deterministic policy gradients based algorithm for SFC
routing, aiming to minimize the deployment cost based on
geographic location and the processing delay. However, the
authors in [30] suppose that all VNF instances have already
been placed on network nodes, so the SFC routing problem
is simplified to the deployment of paths and allocation of
traffic load on the links.

VNF placement and SFC routing: By using the DQN
algorithm, Xiao et al. [31] solve VNF placement and SFC
routing problem for the optimization of throughput and
operation cost. The DDPG algorithm is adopted in [32] to
solve the VNF placement and SFC routing problem, aiming
to improve the inter-domain load balancing capabilities
in multiple non-cooperative domains. Moreover, Tong et
al. [33] propose a Gated Recurrent Units (GRU)-based traffic
prediction model and place VNF and routing in advance
based on the prediction result. They apply a DRL algorithm
called Asynchronous Advantage Actor-Critic (A3C) to train
the agent and then obtain the optimal strategy.

Nevertheless, none of the aforementioned works con-
sider the impact of surrounding nodes’ resources on net-
work states. In fact, the importance of neighbors to the
learning agent is distinguishable according to their remain-
ing resources in the DRL model. The attention mechanism
enables to focus on neighbor nodes with sufficient resources
and contributes to the generation of neighbor interaction be-
haviors. Our proposed A-DDPG and P-AC are verified to be
able to efficiently and jointly solve the VNF placement and
SFC routing problem by applying the attention mechanism
to the DRL architecture and using the Actor-Critic network
structure.

3 NETWORK MODEL AND THE VNF PLACEMENT
PROBLEM ANALYSIS

In this paper, our goal it to jointly consider the VNF place-
ment and SFC routing problem. Due to the complexity
of this problem, we propose to solve it sequentially. Our
rationale is to first solve the SFC routing problem and then
use the returned solutions as VNF placement problem input
to solve the VNF placement problem eventually. Due to the
reason that the VNF placement problem is more representa-
tive and complex than the SFC routing problem, we first
present to study the VNF placement problem, assuming
the routing information is already calculated by using the
solutions for solving the SFC routing problem proposed in
Section 6. As a result, in this section we begin with the
VNF placement problem by describing the network model,
network utility model, and cost model, respectively, in Sec-
tion 3.1, 3.2 and 3.3. Subsequently, we formulate the VNF
placement problem with the objective and constraints in
Section 3.4. For the convenience of reading, we summarize
the notations used in Table 1.

3.1 Network model

Firstly, we consider a physical network which is presented
as a graph G = {N , E}, where N is the set of nodes, and
E is the link set connecting each of two nodes1. We mainly
consider two kinds of resource constraints, including node
and link resources constraints. Each node n ∈ N has a
computing resource capacity (i.e., CPU cycles per second),
which is denoted as δn, dn represent the delay of node
n ∈ N . Meanwhile, ηe represent the capacity of link e ∈ E
and du,v indicates the delay between nodes u and v.

We denote the set of requests by R = {r1, r2, ...rl}, and
each request by rl(sl, dl, ξ,Fl, Dl) ∈ R, each rl transmits
its packets from a source node sl to a destination node dl
at a flow rate ξ in required delay Dl. Meanwhile, Fl =
{fl1, fl2, ..., flk} is used to indicate the VNFs set, where flk
is the kth virtual network functions in service function chain
Fl. And we use the high-order matrix k ∗N to represent
the deployment status of VNF on a physical server. Fig. 1
illustrates an example of service function chains. A service
function chain is composed of several network functions.
In a network function virtualization environment, these

1. We first assume that a complete graph is used in the VNF place-
ment problem. Later, in Section 6, we will demonstrate how to solve
the SFC routing problem to find the path and serve as the input for the
VNF placement problem.
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TABLE 1
Notations.

Variable Definition

G Physical network

N , E The set of nodes and links of the network

R
The set of requests. For each r(ξ,F , D) ∈ R,

ξ indicates the flow rate, F represents a set of

requested VNFs, D denotes the requested delay

Fr The set of requested VNFs of r ∈ R
ure
s,a, u

c
s,a The revenue function and cost function

T r The total delay of network request r ∈ R

Cf
n

The required processing capacity for f ∈ Fr

on node n ∈ N
Cu,v The link capacity between u and v

sk, dk Source and destination of request r ∈ R
dfn Processing delay for f ∈ Fr on node n

δn, ηe Capacity of node n ∈ N and link e ∈ E
Ψ The expected service payment from consumers

S,A,R The state space, action space, and reward

xr,f
n

A Boolean variable. It is 1 if r’s requested

VNF f is placed on n; and 0 otherwise

yru,v

A Boolean variable. It is 1 if path between

u and v is used for delivering the requested

task of r; and 0 otherwise

ki, vi, qi The key, value and query for node i ∈ N
scji The compatibility of query qi with key kj

θµ and θQ The weights of actor and critic networks

lou,v , b
o
u,v , t

o
u,v

The distance, bandwidth and traversing delay

from u to v

Fig. 1. System Framework.

network functions are virtualized as VNFs. Then, an ordered
combination of several VNFs comprises a service function
chain.

3.2 Network Utility Model
In this section, we formulate the network utility model
which refers to a function of revenue and cost. More spe-
cially, we define the utility function U as:

U = ure
s,a − uc

s,a (1)

where ure
s,a is the revenue function, and uc

s,a is the total cost.
We use the concept of Shannon’s entropy [34] and define the
revenue function as:

ure
s,a =

∑
r∈R

yru,v · ξ ·Ψ−
∑
r∈R

(− 1

T r
log

1

T r
) (2)

where ξ represents the traffic of the request r, yru,v It is 1 if
path between u and v is used for delivering the requested
task of r, and 0 otherwise. Ψ is the expected service revenue
from consumers according to the Service Level Agreement
(SLA) [35]. T r represents the total delay of network request
r, and it is the sum of the processing delay of all nodes.
The purpose of using information entropy is to unify service
revenue and delay into an order of magnitude to ensure the
additivity between data. The transmission delay in the SFC
is defined as:

T r =
∑
f∈Fr

xr,f
n · dfn +

∑
eu,v∈E

yru,v · du,v ∀u, v, n ∈ N (3)

where dfn represents the processing delay for f ∈ Fr on
node n, du,v indicates the delay between nodes u and v.

3.3 Cost Model
The cost function uc

s,a includes three parts: operation cost,
deployment cost, and transmission cost.

3.3.1 Operation cost
Each physical node needs to complete the preparatory work
before deploying VNFs, such as the pre-configuration of
different types of VNFs. We define the unit operating cost
as Φop, then the total operation cost is defined as:

uop
s,a =

∑
n∈N

xr,f
n · Φop ∀r ∈ R, f ∈ Fr (4)

3.3.2 Deployment cost
The deployment cost of a server is directly proportional to
the resources consumed. Therefore, we stipulate that VNF
deployment cost is mainly generated by the server of the
deployed function. If no VNF is placed on the server, the
deployment cost is not considered. We define the unit de-
ployment cost as Φde. The total deployment cost is defined
as:

ude
s,a =

∑
n∈N

xr,f
n · Φde ∀r ∈ R, f ∈ Fr (5)

3.3.3 Transmission cost
The transmission cost is the communication cost for trans-
ferring traffic between nodes. In practice, the deployment
cost is negatively correlated with the transmission cost [36].
We define the transmission unit cost as Φtr. The total trans-
mission cost is defined as:

utr
s,a =

∑
e∈E

yru,v · ξer · Φtr ∀r ∈ R, u, v ∈ N (6)

Finally, uc
s,a is a combination of above mentioned three

kinds of cost:

uc
s,a = uop

s,a + ude
s,a + utr

s,a (7)
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3.4 Problem Definition and Formulation
Formally, the VNF placement problem can be defined as
follows:
Definition 1. Given are a network G = {N , E} and a set of

requests R, for each request r(ξ,F , D) ∈ R, the VNF
placement problem is to place the VNFs on N , such that
the network utility U is maximized.

The VNF placement problem is known to be NP-hard [8].
We first formally present the VNF placement problem with
objectives and constraints. We begin with some necessary
variables.

Boolean Variables:
xr,f
n : It is 1 if r′s requested VNF f is placed on n; and 0

otherwise.
yru,v : It is 1 if the path between u and v is used for

delivering the requested task of r; and 0 otherwise.
Placement Objective:

max U (8)

Placement Constraint:∑
n∈N

xr,f
n = 1 ∀r ∈ R, f ∈ Fr (9)

Node Capacity Constraint:∑
r∈R

∑
f∈r

xr,f
n · Cf

n ≤ δn ∀n ∈ N (10)

Delay Constraint:∑
f∈r

∑
n∈N

xr,fi
n · dfn ≤ D ∀r ∈ R (11)

Eq. (8) maximizes the network utility. Eq. (9) ensures that
for each requested VNF f , it must be placed on one node in
the network. Eq. (10) indicates that each node’s capacity is
not violated. Eq. (11) ensures that for each request the total
delay does not exceed D.

Without considering the variability of network states,
this optimization problem can be solved by using ILP
or heuristic algorithms [8]. However, it is non-trivial to
use those techniques to model dynamic metrics. DRL can
capture the dynamic states of the networks. Therefore, in
Section 4, we exploit DRL to solve the VNF placement
problem.

4 DRL-BASED VNF PLACEMENT ALGORITHM

In this section, we begin with the DRL model design in
Section 4.1. In fact, this is a Markov decision process in-
cluding state, action, and reward. Then we demonstrate our
proposed A-DDPG algorithm to solve the VNF placement
problem in Section 4.2, 4.3 and 4.4.

4.1 DRL Model Design
In the DRL model, we first model the VNF placement prob-
lem using a Markov decision process. The Markov decision
process can be represented as a tuple (S,A,R) with the state
space, action space and reward composition. In particular,
we consider a discrete-time period T for dynamic changes
in the state of the network resources. At each time step
t ∈ T , the DRL agent chooses an action for placing the VNF

and receives the state and reward by interacting with the
environment. Accordingly, the 3-tuple (S,A,R) in DRL for
the VNF placement problem are defined as follows:

State: The state space can be described by a vector S =
{s1, s2, s3, ..., sT }, where each term st ∈ S represents the
remaining resources of the virtual links and nodes at time t.
T represents a periodic discrete time.

Action: The action of any agent is a vector A with each
term a ∈ A representing VNF placement. Therefore, we
define an action as a = {xr,f

n , ξfr } ∀r ∈ R, f ∈ Fr, n ∈ N .
Reward: The reward is a value indicating correct ac-

tion. Whether the action can bring profit and whether
the user’s demand is met is taken as the criteria to af-
fect the reward value. The reward received at time-slot t
is set as the objective of our utility function, defined as
R =

∑
r∈R yru,v ·ξ·Ψ−

∑
r∈R(− 1

T r log 1
T r )−uop

s,a+ude
s,a+utr

s,a

according to Eq. (1). We put the constraints in the reward
function as a penalty factor. If the action brings benefits to
the network and saves cost, the reward will be a positive
value to encourage the operation. However, if the cost
increases or the constraint is violated, a negative reward
is returned. Consequently, this method affects the action
decision to make sure it does not violate these constraints.

4.2 Attention Model

We argue that the neighbor nodes of each server node are
of great significance to the performance of VNF placement.
Therefore, we introduce an attention mechanism into the
neural network, which allows the network to better ob-
tain neighbor node information. The attention mechanism
assumes that the weights of nodes measure the matching
degree between neighbors in the attention layer.

Formally, we define hi as the state of the node, and the
key ki, value vi, and qi can be calculated as follows:

ki = WK · hi, vi = WV · hi, qi = WQ · hi ∀i ∈ N (12)

where the WQ, WK and WV are the parameter matrices
that can be learned, and hi is equal to si defined in section
4. The compatibility scji of the query qi of node i with the
key kj of node j is calculated as the active function (e.g.,
dot-product):

scji = active(qi, kj) ∀i, j ∈ N (13)

According to Eq. (13), we compute the weights aji using
a softmax function:

aji = softmax(scji ) =
esc

j
i∑N

i=1 e
scji
∀i, j ∈ N (14)

Then the attention value is equal to:

at((ki, vi), qi) =
N∑
i=1

aji · vi =
N∑
i=1

esc
j
i∑N

i=1 e
scji
· vi ∀i, j ∈ N

(15)
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Fig. 2. Actor-Critic Network Design of A-DDPG Framework.

4.3 Placement Network Model

We propose the A-DDPG algorithm based on the Actor-
Critic network structure, which can solve the VNF place-
ment problem defined in Eq. (8)-(11). The Actor-Critic net-
work structure involves two neural networks: actor network
and critic network. They are two different networks in
the A-DDPG algorithm. Actor network is a policy network
for making good decisions on VNF placement, while critic
network is a value function network used to estimate the
current Actor’s policy. Specifically, the Actor and Critic
networks both construct two neural networks with the same
structure but different parameters, namely the evaluation
and target networks. As demonstrated in Fig. 2,the Actor-
Critic network structure is represented as an attention layer
and a multi-layer fullyconnected neural network with two
hidden layers. We include the attention mechanism in the
A-DDPG since it can learn the hidden states of inputs more
effectively.

The cumulative reward is used as the target value, while
the expected cumulative reward is used as the projected
value by the network. The goal of training is to get the
predicted value as near to the target value as possible. The
loss function is defined by the following equation:

L(θ) =
1

B

∑
t

(yt −Q(st, at|θQ)2) (16)

where θ represents the parameter of actor for sampling and
B indicates the size of the replay buffer. Then, the partial
derivative of the loss function to the weight of the neural
network can be calculated as:

∂L(θ)

∂θ
=

1

B

∑
t

(yt −Q(st, at|θQ)2)
∂Q(st, at|θQ)

∂θ
(17)

where Q(st, at|θQ) refers to the long-term return of an ac-
tion, taking a specific at under a specific policy from the cur-
rent state st, and yt denotes the predicted return. Through
multiple iterations of the gradient descent method and the
back-propagation mechanism, the Q(st, at|θQ) value can be
obtained.

Algorithm 1 A-DDPG Training Procedure

1: Randomly initialize critic network Q(s, a|θQ) and actor
network µ(s|θµ) with weights θQ and θµ

2: Initialize target network Q
′

and µ
′

with θQ
′

, θµ
′

3: Initialize replay buffer B
4: for episode = 0, 1, ...,M do
5: Initialize a random process N for action exploration
6: Receive initial observation state s1
7: for t = 0, 1, ..., T do
8: Select action at = µ(st|θµ) + Nt according to the

current policy θµ and exploration noise Nt

9: Execute action at and observe reward rt and ob-
serve new state st+1

10: Store a random minibatch of N transitions
(st, at, rt, st+1) from B

11: Set yt = rt + γQ
′
(st+1, µ

′
(st+1|θµ

′

)|θQ
′

)
12: Update critic by minimizing the loss:

L = 1
B

∑
t(yt −Q(st, at|θQ)2)

13: Update the actor policy using the sampled gradient:
▽θµJ ≈ 1

B

∑
▽aQ

(
st, at|θQ)▽θµ µ (s|θµ) |st

)
14: Update the target network:

θQ
′

← τθQ + (1− τ) θQ
′

,
θµ

′

← τθµ + (1− τ) θµ
′

15: end for
16: end for

4.4 Algorithm Design

We further describe the entire process from observation to
running execution to better understand A-DDPG frame-
work in Fig. 3.

Store the training data. The DRL agent interacts with
the environment in Step 1, which is the first stage of
observation. This step is mostly for obtaining the initial
state and storing historical samples. On the one hand, the
agent receives the environment’s original state, including
the server’s placement status, and gathers environmental
history samples that must be trained. The initial state,
action, reward, and the next state are all included in these
samples. On the other hand, the samples are then stored in
the replay memory. Following that, the action is achieved
using the greedy technique, as the neural network parame-
ters are also randomly initialized, the parameters will not be
updated at this step, and they are collectively called random
actions. Then, according to the number of iterations, epsilon
is lowered. The simulator then performs the selected action,
returning a new state and reward.

Input the sampling data. The replay buffer is introduced
into the network in step 2 of the observation process, and the
network is trained using replay buffer data with the goal of
minimizing correlation between samples. More specifically,
the previous state st, action at, new state st+1, and reward
rt are assembled into (st, at, rt, st+1) to enter the replay
memory for parameter updating. Finally, using the epsilon
greedy strategy, the next action is chosen, and the cycle is
repeated until the number of iterations approaches the limit,
which is determined by the size of the replay buffer.

Traning the A-DDPG network model. Following the ob-
servation process, sufficient samples required for A-DDPG
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Fig. 3. The A-DDPG Framework.

training are obtained. Algorithm 1 describes the training
process of Step 3 in Fig. 3. The A-DDPG agent, in further
detail, initially sets the weights of the critic Q(s, a|θQ) and
actor µ(s|θµ) networks as θQ and θµ, respectively (Line
1). After that, The A-DDPG agent additionally initializes
a target network and replay buffer (Line 2-3). For each
training episode (Line 4), the agent receives the current
environment’s state after adding exploration noise N (Line
5-6). The DRL agent selects the action of VNF placement
depending on the current policy (Line 7-8). The agent then
takes action at, receive the rewards r and the next state st+1

(Line 9). The state experience tuple (st, at, rt, st+1) is then
saved into an experience replay buffer (Line 10). Next, the
actor network and the critic network will be updated (11-
14). First we need to prepare significant training data: (1)
calculate the predicted baseline yt (Line 11) and (2) calcu-
late the policy µ(st|θµ) + Nt and Q baseline Q(st, at|θQ).
The mean squared error (MSE) of the predicted baseline
and actual baselines is the value loss function (Line 12).
After then, the neural network is trained using gradient
descent (17) (Line 13), and the network’s weight parameters
are updated regularly (Line 14). The processes above iterate
until convergence or the predefined episode is complete.
Notably, M is the total number of episodes, while T denotes
the number of training rounds in each episode.

Choose a trained Actor network. After obtaining its
well-trained A-DDPG model training, the long-term cumu-
lative reward of the action is preliminarily evaluated by
inputting the current state in step 4.

Run simulation experiments online. The goal is to
decrease the selection probability of the current actions with
poor performance for optimizing the solution space. Step 5
is to run simulation experiments online by interacting with

the environment. In each interaction, the reward of each
placement strategy in the solution space is evaluated against
the predicted values.

Get the optimal strategy. In Step 6, the agent in the
A-DDPG model learns to perform the correct action (i.e.
the placement strategy) in each state so that the agent can
receive a good reward.

5 PERFORMANCE EVALUATION

5.1 Simulation Settings

The simulations are all implemented on an Intel (R) Core
(TM) i7 Windows 10 64-bit system. Moreover, the network
parameters, computing capabilities, and traffic requests are
randomly generated as follows, which is similar to existing
works [37], [38]. The basic environment of the simulation is
set up to construct a network computing platform composed
of 50 servers, which has [1, 100] units of capacity. For each
link in the network, its capacity is randomly assigned from
the range [2, 4] Gb/s and its delay takes value in [10, 50] ms
in the simulation. We simulate [10, 100] requests and each
request requires an SFC consisting of 3 to 6 different VNFs
(i.e., firewall, NAT, IDS, load balancer, WAN optimizer and
flow monitor) according to [39]. For the unit cost of Eqs. (4),
(5), (6), we set Φop = 0.2, Φde = 0.4, and Φtr = 0.1.

An input layer, an output layer, and 3 hidden layers
make up the structure of our attention-based deep neural
network. The 3 hidden layers comprise an attention layer
and 2 fully connected layers. The two fully connected layers
each include 32 and 16 hidden nodes, respectively. The hy-
perparameters for DRL are shown in Table 2, and the target
network parameters are updated once every 200 steps.
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TABLE 2
Hyper parameters for DRL.

Buffer size 10000 Learning rate 0.1, 0.01, 0.001

Hidden nodes 32, 64 Number of episodes 3000

Discounted factor 0.8 Hidden layer 3

The implementation of the A-DDPG algorithm is di-
vided into three modules. The first is the construction of the
underlying network environment, including the simulation
of network topology nodes and link resources. Next, the re-
quest generation module. Each request contains an SFC and
each SFC contains 3 to 6 VNFs. Finally, the DRL algorithm
module runs the A-DDPG algorithm. Once the agent is well-
trained after convergence, it can make the right decision for
the VNF placement problem.

We compare our A-DDPG method with three counter-
part algorithms: DDPG, NFVdeep [31], and Q-learning.

DDPG: DDPG is a model-free DRL algorithm to solve
the VNF placement problem. The difference with A-DDPG
is that it does not add an attention mechanism. For each
request r(ξ,F , D) ∈ R, the DDPG algorithm tries to place
f ∈ Fr on node n ∈ N only considering its current
remaining resource capacity, regardless of the neighbors’
states. Moreover, it considers actor and critic networks with
two fully connected layers, in which the number of nodes
is 32 and 16, respectively. Meanwhile, we set α = 0.01, the
batch size is 64, and γ = 0.8, which is consistent with the
parameter settings of A-DDPG.

NFVdeep: NFVdeep is a state-of-the-art method for VNF
placement problems. NFVdeep methods are a type of RL
technique that relies upon optimizing parameterized poli-
cies concerning the expected return (long-term cumulative
reward) by gradient descent.

▽θJ (θ) =

(
∂J (θ)

∂θ1
, ...,

∂J (θ)

∂θn

)
(18)

where the parameter θ is updated as:

θi+1 = θi + α▽θi J (θi) (19)

where α is the learning rate and n is the number of neurons.
During the training process, the agent processes one VNF
of SFC in each MDP state transition. Then the reward for
each state s is calculated, and the physical network gives the
reward to the NFVdeep agent. Subsequently, the NFVdeep
agent is trained for updating the policy circularly until the
reward converges.

Q-learning: This is an model-free reinforcement learning
technique that seeks to find an optimal action to take at a
given state. Q-learning utilizes a table Q to represent the
expected total reward of taking that action from a given
state. The Q-value is updated as follows:

Q (st, at)← Q (st, at) + α[r + γmax
at+1

Q (st+1, at+1)−Q (st, at)]

(20)
where s represents the state at a certain moment, at indicates
the action taken at that moment, Q (st, at) denotes the Q-
value corresponding to the (state, action) pair, r reflects the

reward function, Q (st+1, at+1) represents the state transi-
tion function, and at+1 denotes the action corresponding to
the next state.

For the above three methods, we compare their network
utility, delay, and running time. Among them, the network
utility reflects the resource occupancy of the nodes and links
of the network according to the Eq. (1), and the total delay
is calculated by the sum of each path and node processing
delay to reflect the network utility of VNF placement.

5.2 Simulation Results

Fig. 4(a) shows reward returned by A-DDPG under different
learning rates (0.1, 0.01 and 0.001). The placement of all
VNFs is completed in each training episode. It can be seen
from Fig. 4(a) that the learning rate affects the value of
reward in the algorithm’s training progress. The reason
is that the learning rate represents the amount that the
weights are updated (a.k.a. the step size) during training.
Smaller learning rates may lead to a slower weight update,
so more training episodes are needed to achieve conver-
gence of reward, whereas larger learning rates cause rapid
changes and require fewer training episodes. According to
our simulation results, when the learning rate is 0.01, A-
DDPG achieves the best performance in terms of reward.
Therefore, we will take the best learning rate for comparison
with other algorithms. Its learning speed is acceptable, and
it leads to faster convergence of reward function.

Fig. 4(b) shows the loss value of the A-DDPG method
under different learning rates (0.1, 0.01 and 0.001). It can
be seen from Fig. 4(b) that the learning rate affects the loss
value in the algorithm’s training step. The reason is that if
the learning rate is too large, the loss function may directly
exceed the global optimization of the learning process,
whereas a small learning rate can cause the process to get
stuck. When the learning rate is small, the changing speed
of the loss function is slow. In this context, it will greatly
increase the convergence complexity of the network, and
the loss function is easy to be trapped in the local minima.
Our simulation shows that the learning rate of 0.01 provides
the best performance for A-DDPG.

Figure 4(c) shows the loss of A-DDPG with different
batch sizes, where the batch sizes are 32, 64, and 128, respec-
tively. As can be seen from Fig. 4(c), as the episodes increase,
the batch size will affect the value of the loss. We use batch
gradient descent in the simulation to complete the iteration,
which processes a portion of the samples at a time. A small
sample will bring a large variance, which will cause the loss
function to oscillate and slow down the convergence speed
of the algorithm, especially when the network is complex.
If the sample size is too large, the gradient estimation will
be more accurate and stable, which may cause the neural
network to converge to a poor local optimal solution point.
Therefore, the batch size cannot be set too small or too large.
According to our simulation results, the batch size can be set
to 64. In addition, we find that after a series of shocks, the
loss value in Fig. 4(c) can always be stable near 0 within
a certain range. This indicates that our proposed algorithm
can achieve convergence in VNF placement.

Fig. 4(d) shows the reward returned by all the algo-
rithms. As the episodes increase, the value of the reward
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Fig. 4. Performance comparison of A-DDPG, DDPG, NFVdeep, and Q-learning.

gradually converges. In particular, we find that the A-DDPG
algorithm is stable after being trained for 200 episodes.
Subsequently, the reward value of A-DDPG somewhat
fluctuates. On the one hand, this is due to the random
generation of network requests, and the reward value is
related to the completion of the network request. On the
other hand, when poor samples are selected, one may end
up in a local optimum, which results in a low reward
value. It can be observed from Fig. 4(d) that Q-learning
and NFVdeep always return the lowest reward because
they do not directly use the deep network to select actions.
DDPG performs better due to its capability to select actions
directly. However, it is not as good as A-DDPG, since it fails
to capture the neighbors’ states. The A-DDPG algorithm
can always achieve the highest reward after 200 episodes
of training among the simulated algorithms. The reason is
that the A-DDPG agent takes action by additionally paying
attention to the states of neighbors, and the correct behavior
enables the agent to obtain positive rewards faster during
training, which accelerates the learning process. The results
imply that the A-DDPG agent is more intelligent than other
agents.

Fig. 4(e) depicts the influence of learning rate and batch
size on the utility for A-DDPG. As the A-DDPG model
iterates, the utility gradually converges towards a maximum
where the model optimizes the weights. The utility value of
α = 0.01 is higher than that of α = 0.001. We analyze
that this is because the higher learning rate may miss
the global optimization of the learning process, so it will
cause the network to converge to a local optimum and
obtain a low utility. Moreover, the speed of convergence
when batch size = 64 is higher than the value when
batch size = 32. This is because, as the batch size increases,
the data processing speed becomes faster, which can reduce
training time and enhance system stability.

Fig. 4(f) shows the cost returned by all the algorithms.
As can be seen from Fig. 4(f), the training efficiency of Q-
learning is lower than that of A-DDPG. More specifically,
the cost of NFVdeep fluctuates at 5800 after 200 episodes.
The cost of Q-learning fluctuates at 6000 after 1800 episodes.
The cost of A-DDPG stabilizes after 100 episodes with
slight fluctuations at 4000. Given these points, A-DDPG
converges faster than NFVdeep and Q-learning. This is
because, during initial training, VNFs are randomly placed
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on the different servers, which incurs large operation and
transmission costs. Through the training of Q-table and
neural networks, Q-learning and A-DDPG agents can re-
duce unnecessary costs through training results. However,
due to the use of neural networks, an A-DDPG agent is
conducive to expressing complex network states. Compared
with the discrete strategy in NFVdeep, A-DDPG can directly
optimize the strategy (e.g., request rate) to meet the time-
varying network states. Under the same conditions, it can
process more network requests and reduce cost, thereby
improving the processing capacity of the network. The
result shows that an A-DDPG agent is more intelligent since
it can achieve lower costs.

Fig. 4(g) shows the influence of the number of servers on
the delay for all the algorithms. As shown in Fig. 4(g), the
delay shows a downward trend as the number of servers
increases. With the increase in the number of servers, it
guarantees enough resources and applicable paths to accom-
modate requests. Our A-DDPG algorithm achieves a lower
delay compared with the other three approaches. This is
because, as the number of servers increases, the topology
becomes more complicated. The placement of VNFs using
NFVdeep and Q-learning can easily cause the server to
fall into a local bottleneck due to performance degradation,
whereas A-DDPG adds incentives for delay optimization
in the reward function. The value of the reward increases
more and more as delay decreases. Therefore, the node with
the smaller delay will be selected to deploy the VNF in the
strategic choice.

Fig. 4(h) shows the influence of the number of servers
on the utility for all the algorithms. As shown in Fig. 4(h),
A-DDPG achieves higher utility than the others. It reflects
the superiority of A-DDPG in expressing decision-making
in complex network environments. A-DDPG can obtain
better utility under time-varying network states compared
with the DDPG algorithm. NFVdeep performs well in an
environment with 30 servers. Q-learning is not sensitive
to the number of servers. In short, the A-DDPG method
can obtain higher utility by adopting an adaptive selection
policy in a complex network environment.

Fig. 4(i) shows the running time performance of all
the algorithms. As seen in Fig. 4(i), the running time of
Q-learning is significantly higher than those of A-DDPG,
DDPG, and NFVdeep. In addition, when there are more
than 80 requests, the running time of Q-learning increases
rapidly. This is because when there are fewer requests, the
servers provide a large aggregate capacity available on-
demand, and there exist more feasible solutions for the
VNF placement problem to achieve the best performance.
However, with an increase in resources, the state space
and action space in the Q-table greatly increase. In that
case, finding the optimal strategy by looking up the table
becomes difficult, and considering the complex calculations
of nodes and links in large NFV networks, it takes more time
to find the optimal strategy in large networks. Although A-
DDPG and DDPG spend some more time to train the neural
networks, after the training is completed and deployed,
it only needs to use the well-trained neural networks for
reasoning. A-DDPG has more running time than DDPG.
This is because A-DDPG’s neural network architecture has
one more attention layer than DDPG, which causes a slight

increase in running time. Therefore, A-DDPG consumes rea-
sonable running times due to the powerful representation
capabilities of the neural networks.

6 DRL-BASED SFC ROUTING

In the VNF placement problem, a complete graph is as-
sumed, where the link delay is given in advance and the link
bandwidth is not considered. However, the “link” between
each node pair actually indicates a “path” in reality, which
may traverse multiple nodes. In this section, we focus on
solving the SFC routing problem to find a path from a
source to a destination to maximize the number of accepted
requests. The returned SFC routing solutions serve as the
input for the VNF placement problem. Consequently, by
leveraging DRL we first propose a Markov decision process
including state, action, and reward. After that, we propose
our Pointer network-based Actor-Critic (P-AC) algorithm
to solve the SFC routing problem. Then, we discuss the
training process for parameter updating according to the
optimization strategy. Finally, we conduct simulations to
compare P-AC with two existing DRL algorithms in terms
of performance.

6.1 Problem Definition and Formulation
We formally define the SFC routing problem as follows:
Definition 2. Given are a network G = {N , E} and a set of

requests R. For each request rl(sl, dl, ξ,F , D) ∈ R, the
SFC routing problem is to find a path from a source node
sl to a destination node dl at a flow rate ξ in a specific
order in G, such that the number of accepted request O
is maximized.

The SFC routing problem is known to be NP-hard [40],
which has been proved in [40] by reducing it to an NP-hard
weight constrained shortest path problem (WCSPP). Due to
the space limitation, we omit the proof of the NP-hardness
of the SFC routing problem.

6.2 MDP model
In this subsection, we present the proposed DRL-based
control model to solve the SFC routing problem mentioned
above. The model is described as an MDP. We first design
state space, action space, and reward in the MDP as follows:

State: The state space can be described as S = {SN, SE},
which includes node and edge states to accommodate re-
quests. The node states consist of the source node, the des-
tination node, the relay nodes, and the neighbors shortest
path distances to different destinations. The edges states
include end-to-end delay and links maximum available
bandwidth to different destinations.

Action: An action is defined as an ordered pair (u, v),
where u, v ∈ N . The action output for a coming flow
request is also a vector which is the probability distribution
of selecting neighbor nodes as the next stop.

Reward: Since we want to maximize the number of
accepted requests, we define the reward function as to
whether the request is accepted like the following:

Rr = O − β1 max
{
bi,k −Bk, 0

}
− β2 max

{
tq,k − Tk, 0

}
(21)
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Fig. 5. Pointer Network Design of P-AC Framework.

where bi,k is the required bandwidth of k at the node i,
tPq,k is the delay of k at the link q ∈ Qk, Bk is the
bandwidth of current path of request k, and Tk is the
delay of current path of request k. In the objective reward
function in Eq. (21), successfully delivering a request can
increase the reward value by one. Then β1 max{bi,k−Bk, 0}
increases the penalty value if requests are delivered later
than respective deadlines. β2 max{tq,k−Tk, 0} penalizes the
total reward if the on-board logistic bandwidth exceeds the
limit.

6.3 Routing Agent Design
Incorporating the above definitions, we start to design our
P-AC framework.

6.3.1 Pointer Network Model
To map state input to action output, we design a neural
network as the policy function for all requests. The novel
network structure uses attention as a pointer to select the
node with the highest probability as the next-hop node for
path selection at each time of selection. Since the length
of the selected output path is uncertain, the number of
static outputs of the existing neural network does not meet
our needs. Inspired by [41], [42], we employ a pointer
network [43] with structural graph embedding to generate
the full path of the request.

Fig. 5 presents the architecture of the proposed P-AC
neural network. We use the Struct2vec structure to generate
the feature embedding of the network graph. The structure
is mainly divided into two parts, namely the encoder and
decoder. The input of the encoder network includes the
state information of the nodes and the selected SFC routing
path. The encoder of the pointer network model deploys
LSTM cells with 128 hidden units. The decoder also uses
LSTM cells with the same structure and then uses the
softmax function on the output of the decoder to obtain
the probability distribution of the next-hop node. Given a
graph G, Struct2vec first initializes a p-dimensional feature
embedding µn = 0 for each node n ∈ N. The feature
embedding µn is updated synchronously in each iteration
as:

µr+1
u ← f

(
xu, {µv}v∈N, {lou,v}v∈Nu ,

{bou,v}v∈Nu , {tou,v}v∈Nu ; Υ
) (22)

where N is the set of neighbors of node in graph G, xu is a
h-dimensional node feature of u. For example, if the node is
a source node, its representation should contain two main

Fig. 6. The P-AC framework for the SFC routing problem.

types of information: (1) node information, including the
label and processing delay, and (2) node’s neighbor infor-
mation, including the distance, bandwidth and traversing
delay to all its neighbors. If the node type is a destination
node, its representation should contain the node label and
the deadline. The characteristics of the relay nodes include
the requested information, the distance, traversing dela, and
bandwidth from the source node to the destination node.
We denote lou,v, b

o
u,v, t

o
u,v as the distance, bandwidth, and

traversing delay for o to route from u to v, respectively.
Υ is the nonlinear parameters of the pointer model. F
is a generic nonlinear mapping such as a neural network
or kernel function by Υ. Then, the nonlinear propagation
function is defined as:

µr+1
u ← Relu(θ1

∑
v∈Nu

µr
v + θ2Relu(θ3

∑
v∈Nu

lou,v) + θ4

Relu(θ5
∑
v∈Nu

bou,v) + θ6Relu(θ7
∑
v∈Nu

tou,v) + θ8xu)
(23)

where θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 ∈ Υ are the model parame-
ters. Then the embedded representation in Eq. (23) is used
as the input of the pointer network.

To cope with the uncertain length of the output of the
SFC routing problem, we adopt a novel pointer network
as the actor network. The input of the pointer network is
a vector of nodes and link states, and the output is also
a set of vectors of uncertain length indicating the optimal
path selection strategy. The pointer network uses attention
as a pointer to select the node with the highest probability
as the next-hop node for path selection at each selection.
The parameters of the model are learned by maximizing the
conditional probabilities for the training set, which can be
defined as:

θ∗ = argmax
∑
N̄

log p(SN |N̄) (24)

where the N̄ = {N1, ...,Nn} is a sequence of |n| vectors
and SN is the output sequence of pointer network. We
use LSTM to model the probability p(SN |N̄) of the pointer
network. We use two independent LSTMs: a compiler for
encoding the N̄ sequence and a decoder for generating or
decoding the output SN . In this network, a sequence N̄ is
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used as the input to each iteration, and then the sequence
with the highest probability SN is selected as the output of
the decoder using the learned parameter θ∗. Consequently,
a sequence of paths with optimal probability is obtained.

6.3.2 Algorithm Design
We now describe the P-AC framework for the SFC routing
problem. The whole P-AC framework mainly consists of
four parts: Part 1, Part 2, Part 3, and Part 4, as shown in
Fig. 6.

Part 1 is to construct the non-fully connected graph with
N nodes and E links, and then we initialize the source
node and destination node of each request. All other nodes
can transmit request R as connections. Therefore, we can
enumerate all possible connected links in the graph. Then,
using the Dijkstra algorithm, we find the shortest path of
each edge e ∈ E in the network G. Finally, the distance,
bandwidth, and traversing delay of the requested path are
recorded as the three weight attributes of the edge, denoted
as {lou,v}v∈Nu , {bou,v}v∈Nu , {tou,v}v∈Nu .

Part 2 converts the graph data into vector data. Step 2
can be divided into two steps, namely (1) generating a node
topology map according to the parameters of step 1, and (2)
converting the node topology map into a vector structure.
According to the topology generated in the part 1, we know
that some nodes are not directly connected. We find the
relay nodes for the edges that are not directly connected and
find the shortest distance, replacing the infinity value in the
updated node topology matrix. Then we construct random
paths for all requests by randomly generating a random
order of |train size| nodes, and then put the node with the
property start to the first, so that we generate |train size|
requested paths with different lengths, and then the graph
data and the requested paths are transformed into vectors.
This is because the training input of the model is generally
a vector structure. The purpose of step 2 is to facilitate the
subsequent input of data into the model for training.

Part 3 is a generated model. The main goal of the model
is to generate the requested path with the highest number
of total request completions. The input of part 3 is the
network state and the request path graph of part 2.Then, we
design an Actor-Critic network structure based on a pointer
network with structural graph embedding to generate the
path of each request step by step. When generating a path,
each step looks for the element with the largest weight in
the current input sequence, and the weight judgment is
obtained by the attention distribution as shown in Fig. 5.

Part 4 is to put vector data into model training. More
specifically, the pointer network is performed in the routing
training procedure. In this section, we train the model
parameters by gradient function, which can be calculated
by:

▽J (Υ|S) ≈ 1

B

i=1∑
B

(
R− b (Si)×▽ΥlogpΥ

(πi|Si)
)

(25)

where B is the number of samples {S1, S2, ..., SB}. It can be
observed that given a well-formed b(Si) function [41], the
gradient can be easily computed. In particular, Algorithm 2
in Part 4 is trained to find a path for each request by

Algorithm 2 Routing Training Procedure
1: Randomly initialize pointer and critic network with

weights ΥP and ΥC

2: Initialize sample batch, training episode M , replay
buffer B

3: for episode = 0, 1, ...,M do
4: Take a sample of Si from batch size
5: Select action at = µ(st|θµ) + Nt according to the

current policy
6: Execute action at and observe reward rt and observe

new state st+1

7: Store a random minibatch of N transitions
(st, at, rt, st+1) from B

8: Update critic by minimizing the loss:
L = 1

B

∑
t(O −Q(st, at|θQ)2)

9: Update the actor policy using the sampled gradient:
▽J (Υ|S) ≈ 1

B

∑i=1
B

(
R− b (Si)×▽ΥlogpΥ

(πi|Si)
)

10: end for

reinforcement learning of the SFC routing agent, and at each
time slot, we can process multiple requests one by one.
In the routing training procedure, the model parameters
are updated iteratively. In each iteration, new graphs (con-
structed by network states as described in Part 1) are firstly
sampled from B (line 4), whose paths are then developed
using pointer networks (line 5). The estimated reward value
of these states is also generated using a critic network
at the same time (line 6). Subsequently, the agent stores
the quadruple (st, at, rt, st+1) into the experience replay B
(Line 7). The next step is to update the pointer and critic
network. Then the gradient of pointer network is calculated
using Eq. (25), and the mean squared error objective of critic
network is computed by L = 1

B

∑
t(O − Q(st, at|θQ)2)

(line 8). Lastly, the model parameters are updated using the
Adam optimizer [44] (line 9) with a mini-batch size. This fin-
ishes one iteration of the training algorithm. The algorithm
terminates when the reward converges towards the optimal
policy, or a pre-defined maximum number of iterations is
reached. We set the maximum number of rounds to be 5000
based on simulation experience.

6.4 Performance evaluation
6.4.1 Simulations Setting
We conduct simulations on three network topologies,
namely, CERNET [45], GÉANT [46] and Abilene [47]. The
topology parameters are shown in Table 3. CERNET is
the first educational network funded by the Chinese gov-
ernment and managed directly by the Chinese Ministry
of Education. GÉANT is the pan-European data network
for the research and education community. Abilene is the
leading academic network created by the Internet2 commu-
nity, connecting more than 200 universities in the United
States. For each link in the network, its capacity is randomly
assigned from the range [2, 4] Gb/s and its delay takes
value in [10, 50] ms, which is in accordance with the real
GÉANT topology information [48]. We keep the parameters
of both Abilene and CERNET network topologies the same
as GÉANT to facilitate the comparison of the algorithms’
performance. Additionally, all requests in the network are
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Fig. 7. Performance comparison of P-AC, DQR, and Q-learning.
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20 40 60 80 100
Number of requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

n
ce

 R
ad

io

P-AC
DQR
Q-Learning

(b) Abilene.
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Fig. 8. Acceptance Ratio (AR) of three algorithms in three topologies: (a) CERNET (b) Abilene (c) GÉANT.

randomly generated. Each request has a random flow rate
between 1 Mbps and 5 Mbps, which is in accordance
with [49].

TABLE 3
The Parameters for CERNET, GÉANT, and Abilene Topologies.

Network Topologies Nodes Links

CERNET 39 106

GÉANT 32 82

Abilene 39 89

We compare our P-AC algorithm with two counterpart
algorithms: DQR [50] and Q-learning.

DQR: DQR is a DQN-based greedy online SFC routing
method. The difference with P-AC is that it does not add a
Critic network. For each request r(ξ,F , D) ∈ R, the DQR
algorithm tries to find the path on G only considering its cur-
rent remaining link bandwidth, regardless of the neighbors’
states. Moreover, it considers current and target Q networks
with LSTMs. Meanwhile, we set α = 10−2, the batch size
to be 64 and γ = 0.8 in DQR, which are consistent with the
parameter settings of P-AC.

Q-learning: Q-Learning is a model-free reinforcement
learning technique that makes decisions. For each request
r(ξ,F , D) ∈ R, the Q-learning algorithm tries to find the
path from source to destination in G, such that the number
accepted requests is maximized.

For the above two methods, we compare their returned
delay value and reward value, which is reflected by the
number of requests in Eq. (21).

6.4.2 Simulation Results

Fig. 7(a) shows the path delay performance returned by
all the algorithms in three topologies for 100 requests. As
shown in Fig. 7(a), the achieved delay performance of all
the algorithms behaves in a slightly downward trend as
the topologies’ size increases. For a fixed number of 100
requests, P-AC achieves a lower delay performance than
the other two algorithms. However, the total delay result
returned by all these three algorithms does not show a big
difference with increasing link connectivity. This is because
the paths learned by these three algorithms are roughly
the same distance, so the length of the paths do not differ
significantly. As a result, there is no big difference in delay
among these three algorithms. However, there is a difference
in the AR performance for these three algorithms in the
network as shown in Fig. 8(a), 8(b) and 8(c).

Fig. 7(b) depicts the reward values returned by different
algorithms for 100 requests. It can be seen from the figure
that with the episodes increasing, the reward values of the
P-AC algorithm converge to a large value. In addition, we
can see that P-AC algorithm converges much earlier when
it is trained for 3800 episodes, while DQR and Q-Learning
algorithms converge at 5000 and 9000 episodes, respec-
tively. This is because P-AC algorithm employs experience
replay compared to the other two methods. In summary,
the results verify the advantages of the P-AC algorithm
in terms of reward and convergence speed compared with
other baselines.

Fig. 7(c) shows the reward of the P-AC algorithm for
different number of requests (30, 45 and 60). It can be seen
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from Fig. 7(c) that the number of requests affects the reward
in the algorithm’s training process. On the one hand, this is
because more requests can be accommodated as the number
of requests increases, and hence the value of the reward
increases accordingly. On the other hand, when the number
of requests increases, the SFC routing agent needs more
episodes to learn the appropriate routing policy to route the
requests.

Figs. 8(a), 8(b) and 8(c) depict the Acceptance Ratio (AR)
of the three algorithms for different number of requests. AR
is defined by the number of accepted requests divided by
the total number of requests. When the number of requests
increases, the achieved AR values of these three algorithms
decrease. This is because as the number of accepted requests
increases, the whole network becomes more congested.
Therefore the remaining available link bandwidth becomes
smaller, and then the request acceptance rate decreases
subsequently. Nevertheless, we see that the P-AC algorithm
can always achieve the highest AR value since P-AC intro-
duces an attention-based pointer network, which verifies its
superiority.

7 CONCLUSION

In this paper, we have first studied the VNF placement
problem, which is to place the requested VNFs for each
request such that the network utility is maximized. To solve
it, we present a DRL framework with an attention mech-
anism, called A-DDPG, which consists of three processes:
observation process, training process, and online running
process. By introducing an attention mechanism, we can
focus on more critical information, such as the state of
neighbors, to reduce the attention to other unnecessary
nodes and improve the training efficiency of the model.
Subsequently, we propose an Actor-Critic-based learning
algorithm, called P-AC, for the SFC routing problem. P-AC
adopts a novel design of a pointer network that enables
decisions on SFC routing. The pointer network of P-AC
uses attention as a “pointer” to select the node with the
highest probability as the next-hop node for path selection
at each time. Via simulations, we find that our proposed
algorithms can outperform the state-of-the-art in terms of
network utility, delay, cost, and AR. In our future work,
we plan to implement the proposed algorithms to verify
their efficiency and scalability in real-world experimental
network scenarios.
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