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Abstract—In the traditional video streaming service provisioning paradigm, viewers typically request video content through a central
Content Delivery Network (CDN) server. However, because of the uncertain wide area network delays, the (remote) viewers usually
suffer from long video streaming delay, which affects the quality of experience. Multi-Access Edge Computing (MEC) offers a way to
shorten the video streaming delay by building small-scale cloud infrastructures at the network edge, which are in close proximity to the
viewers. In this paper, we present novel centralized and distributed algorithms for the video content placement problem in MEC. In the
proposed centralized video content placement algorithm, we leverage the Lyapunov optimization technique to formulate the video
content placement problem as a series of one-time-slot optimization problems and apply an Alternating Direction Method of Multipliers
(ADMM)-based method to solve each of them. We further devise a distributed Multi-Agent Reinforcement Learning (MARL)-based
method with value decomposition mechanism and parallelization policy update method to solve the video content placement problem.
The value Decomposition mechanism deals with the credit assignment among multiple agents, which promotes the cooperative
optimization of the global target and reduces the frequency of information exchange. The parallelization of policy network can speed up
the convergence process. Simulation results verify the effectiveness and superiority of our proposed centralized and distributed
algorithms in terms of performance.
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1 INTRODUCTION

W ITH the proliferation of mobile device technology and
the rapid development of video content providers

(e.g., YouTube or Netflix), mobile video streaming has
become one of the most popular applications for mobile
devices. In the traditional video streaming paradigm, the
viewers typically request video content through a central
Content Delivery Networks (CDN) server to their mobile
devices regardless of their locations. However, due to the
bandwidth limitation and uncertain delay of the wide-area
networks, with the tremendous traffic growth, it can easily
cause a network bottleneck and hence affect the Quality of
Experience (QoE) such as delay, especially for long-distance
remote viewers. According to Cisco [1], video traffic will
account for around 79 percent of the whole mobile data
traffic by 2022, up from 59 percent in 2017. Consequently,
the traditional video streaming paradigm cannot deal with
the ever-increasing mobile traffic without deteriorating the
viewers’ QoE, which remains a crucial drawback to solve.
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Multi-Access Edge Computing (MEC) [2] has been pro-
posed to bring the computing resources closer to end users
by installing a small resource-limited cloud infrastructure
called edge cloud at the network edge. In this context, the
requested video content can be cached/placed on the edge
cloud in order to obtain a shorter path delay. However,
the edge cloud usually consists of a restricted number of
servers, and hence exhibits limited storage and processing
capability. Due to this reason, it is suggested that the edge
clouds are connected with each other via local area network
or wired peer-to-peer links so as to work collaboratively
[3] and expose a greater storage and processing capabil-
ity. Nevertheless, it happens that all edge clouds are fully
utilized and there are still requests remaining to be served
when the number of requests increases. In this sense, the
remote CDN server which has sufficient storage capability
will be in helping to accommodate these requests. However,
the edge clouds and CDN server are connected via long
core networks. Therefore the requests which are relayed
from edge clouds to a CDN server has to experience long
service delay. This deals with how to strategically place
each requested video file on edge clouds and CDN server
such that the video streaming delay is minimized. We call
this problem as the video content placement problem at the
network edge in this paper.

Existing approaches to solving the video content place-
ment problem can be classified into two major categories:
centralized scheme and distributed scheme. In the central-
ized scheme, it is usually assumed that the decision-maker
can have global knowledge and control of the network
information. A unique decision-maker calculates the (op-
timal) solution based on the collected network status and
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all the received requests. An application of the centralized
approach is the Software-Defined Network (SDN) [4]. The
key limitation of the centralized approach is that the as-
sumption of knowing global network information needs
frequent information updates and exchanges, which induces
much more overhead on time and space. Nevertheless, this
scheme can find the optimal solution because of having
a piece of overall network information. Considering that
the video content system operates in a highly stochastic
environment with random demand arrivals, the long-term
system performance (e.g., streaming delay) is more relevant
than the immediate short-term performance. Moreover, the
long-term cost constraint couples the video content place-
ment decisions over time, and yet the decisions have to
be made without knowing the future traffic information.
To cope with this issue, we devise an online time-slot
algorithm that combines the Lyapunov optimization and
the Alternating Direction Method of Multipliers with lower
calculation complexity. Also, we provide a formulated per-
formance analysis that proves our online method can solve
the considered problem in finite steps and find the optimal
solution. This can reduce the frequency of data exchange
and the times of algorithm iteration for cost-saving.

In the distributed scheme, the individual edge cloud
makes the decision based on its own collected requests
and its local states, without the need for a centralized
decision-maker. In this sense, this scheme can cut compu-
tation expenditure and obtain more self-adaptive decisions
to optimize response performance, especially in large-scale
network scenarios. However, dynamic and non-stationary
edge network environment [5], temporal pattern and spa-
tial pattern of video request [6], [7], severely affect the
performance of distributed decision-makers. In this paper,
we solve the considered problem by using a Multi-Agent
Reinforcement Learning (MARL) algorithm to capture the
dynamic changes of the network environment and reduce
calculation complexity. We devise a MARL-based model
with Value Decomposition (VD) credit assignment scheme
in a distributed manner. All agents have zero communica-
tion of observed information, but still, cooperatively update
distributed placement policies through optimizing a global
reward target. Also, in order to speed up the learning pro-
cess, we improve the updating method of policy networks
by parallelization and loss estimation. Our key contributions
are as follows:

• We develop a centralized online video content place-
ment framework by using the Lyapunov technique
to decompose the considered problem into a series
of one-time-slot optimization problems, and then
apply an Alternating Direction Method of Multipli-
ers (ADMM)-based method to solve each of them.
We prove that our proposed centralized method
can solve the considered problem with finite steps
and bound the maximum long-term time average
streaming delay as well as individual edge cloud cost
expense.

• We devise a distributed MARL-based algorithm with
value decomposition credit assignment and policy
networks’ parallelization for video content place-
ment problem. All edge clouds are regarded as RL

TABLE 1: List of abbreviations.

Abbreviation Explanation
CDN Content Delivery Network
MEC Multi-Access Edge Computing

OVCE Online Video Content
placement on the network Edge

INLP Integer Nonlinear Programming
OVCP Online Video Content Placement framework
ADMM Alternating Direction Method of Multipliers
MARL Multi-Agent Reinforcement Learning

DMVP
Distributed Multi-Agent-based algorithm
with Value Decomposition mechanism and
Parallelization of policy network updating

VD Value-Decomposition mechanism
PPO Proximal Policy Optimization

agents that can collaboratively optimize a globally
customized reward target.

• We conduct extensive simulations to validate the per-
formance of the proposed centralized and distributed
algorithms from the algorithm’s hyper-parameter ad-
justment, the changes in problem scale, etc. It is
verified that our solutions have superior abilities to
reduce delay and save costs compared to several
baselines.

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 introduces the
network service model, formally defines the video content
placement problem at the network edge, and formulates
this problem as an exact solution. Section 4 presents a
centralized Lyapunov-based online video content placement
framework and analyzes its complexity. Section 5 proposes
a distributed MARL-based algorithm for the video content
placement problem at the network edge. Section 6 describes
simulation results and we conclude in Section 7. For the
description of any abbreviation, please refer to Table 1.

2 RELATED WORK

2.1 Centralized Video Content and Virtual Network
Function Placement in Edge Computing

Offline Video Content Placement and Caching: Ma et al.
[3] study the cooperative service caching/placement and
workload scheduling problem in MEC. They develop an
offline algorithm based on Gibbs sampling and water filling
to solve service caching/placement problem with offline
policy iteration. Qu et al. [8] generate a caching scheme
by maximizing the QoE value over all the viewers under
the condition that the QoE function has a general or linear
function with received bitrate. They present approximation
algorithms to solve the multiple-choice knapsack problem
of multiple bitrate video content placement in these two
cases, respectively. Tran et al. [9] address an adaptive bitrate
video problem in polynomial time, where the edge clouds
can collaboratively optimize the caching policy with a total
objective. Bilal et al. [10] manage the addition and removal
of videos, and video catalog update by collaborative joint
caching, which aims to minimize replication within the
edge cloud cluster to save place. Nevertheless, the above
literature only works in the offline scenario, and cannot
properly solve the online video content placement problem
where the future requests are unknown.
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Online Video Content Placement and Caching: Wang et
al. [11] study the dynamic configuration adaptation and
bandwidth allocation problem in edge-based video ana-
lytics systems for multiple video streams, where the en-
ergy consumption of mobile devices and service latency
are taken into account. However, only one edge server
(cloud) is considered in [11]. Wang et al. [7] present a
multi-agent actor-critic method to adaptively make caching
decisions after they fix the size of the state space through
clustering the video requests. Wang et al. [12] present a
competitive online schedule algorithm but with only two
anticipatory caching servers to serve a sequence of requests
with minimum costs. Li et al. [13] present an online content
placement, node association, and power allocation strategy
based on Lyapunov optimization and Generalized Benders
decomposition. Similarly, Xia et al. [14] apply Lyapunov
technology to develop an online data caching framework
in edge computing. However, the video streaming delay
and multiple bitrate levels of video files are not thoroughly
considered in the above literature, as we do in this paper.
VNF Placement Problem: Virtual Network Function (VNF)
(or service chain) placement problem has been extensively
studied recently, and this problem refers to placing a set of
functions on network nodes obeying function ordering con-
straint. The VNF placement problem, therefore, shares some
similarities with our addressed problem in some sense. For
example, Ma et al. [15] propose an exact polynomial-time
algorithm to solve the VNF placement problem for the non-
ordered VNF dependence case, and prove that the VNF
placement problem for the totally and partially-ordered de-
pendence case is NP-hard. A dynamic programming and an
efficient heuristic are proposed to solve the VNF placement
problem under these two cases, respectively. You and Li [16]
model the VNF placement constraint via a bipartite graph
and present a load-balanced max-min heuristic to solve
the VNF placement problem. Hawilo et al. [17] study the
VNF placement problem by modeling it as a mixed integer
linear programming optimization and devise a heuristic to
minimize the intra-communication delay among VNFs in
service function chains. Khoshkholghi et al. [18] address
the the VNF placement problem to jointly optimize the
cost and delay. They propose two efficient heuristics using
genetic algorithm and bee colony algorithm to solve this
problem. Please refer to [19] for a survey about the resource
allocation problems in NFV. We can see that the difficulty in
the VNF placement problem mainly lies in how to place
a set of ordered VNFs on network nodes. However, our
addressed video caching problem additionally considers
how to use existing cached video files to provision requests
(with transcoding if possible) apart from solely placing
video content.

2.2 Distributed Video Content Placement in Edge Com-
puting

Poularakis et al. [20] reduce the content delivery delay by de-
vising a pseudo polynomial-time optimal solution with the
multiple-choice knapsack problem and designing a caching
algorithm for multiple network operators that cooperatively
calculate caching policy. But [20] ignores the delay parame-
ter to obtain better results. [21] proposes a distributed online

approach that uses the stochastic gradient descent method
to jointly optimize content placement and delivery without
historical knowledge. But [21] cannot adapt to the dynamic
changes of the network environment. Some works [22], [23]
devise game theory-based algorithms in order to achieve the
Nash Equilibrium among “players” (edge clouds for video
storage). However, with the increase of individuals, it is
hard to guarantee that the optimization process can reach
the Nash Equilibrium.

Moreover, based on Markov Decision Process (MDP)
with time sequence dependence, reinforcement learning
algorithm [24], [25], [26], [27] can dynamically learn place-
ment/caching policy by interacting with the network en-
vironment in a distributed manner. Luong et al. [24] list a
series of DQN-based methods used to provide distributed
placement/caching policy through selecting a channel, base
station, bitrate, and optimizing throughput, transmitted
rate, video quality. But these methods cannot deal with a
large-scale network due to DQN method’s poor conver-
gence performance. Zhong et al. [25] introduce a multi-
agent RL method with centralized critic and decentralized
actor to seek the optimal cooperative caching policy, which
additionally considers the requests from the overlapped
areas. But the centralized critic network has to take all
observations from each agent which causes a large amount
of information transmission. Yeh et al. [26] propose an
online MDP-based algorithm that finds the optimal policy
by aggregating the similar states to reduce the state space.
The state compression and approximate MDP enlarges the
calculation complexity. Tian et al. [27] integrate double DQN
and dueling DQN to simultaneously interact with caching
environment, aiming to individually learn caching policy
for each edge device. Similar to [24], this work still has a
long learning process due to DQN’s rough estimation of the
state value. The features of hard convergence, the large-scale
state and action space, as well as low cooperation efficiency
severely weaken the above-mentioned algorithms’ perfor-
mance. To overcome these weaknesses, we use centralized
credit assignment to implement cooperation among all dis-
tributed agents and omit the large-scale transmission of the
state information, and perform the policy network updating
in parallel to speed up the learning process in this paper.

3 NETWORK MODEL AND PROBLEM DEFINITION

We assume there is a set of edge areas Ne. In each edge area
n ∈ Ne, there is a base station for sending and receiving
signals. An edge cloud consisting of a limited number of
servers is associated with this base station for processing
and caching video contents requested by the viewers. We
use η(n) to represent the available capacity of the edge cloud
in edge area n. λ(n) is usually less than the full capacity of n
to guarantee that the server can work normally and steadily
so that the tasks performed on it will not affect each other.
Moreover, there is also a set of intermediate nodes (e.g.,
router nodes) Ni and one CDN server Nc for simplicity1.
Different edge areas, as well as the CDN server, are inter-
connected with each other by one or more links, and we use
c(l) to represent the capacity of link l. We use Pu,v to denote

1. Our work can also be extended to the scenario of multiple geo-
distributed CDN servers.
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the path set with known K paths2 between u and v, where
u, v ∈ Ne ∪ Nc. As a result, the network can be represented
by G(N ,L), where N = Ne ∪Nc ∪Ni denotes the set of N
nodes and L represents the set of L links. In particular, the
edge area and the (remote) CDN server are inter-connected
via relatively long dedicated backhaul connectivity com-
pared to the connection between edge areas. We assume that
the network lifetime consists of 1, 2, . . . , T time slots and
the span of a time slot can be set manually to be longer than
video streaming delay in order to avoid frequent update
configurations and reduce overall costs [11]. For instance,
in the Software-Defined Wide Area Networks (SD-WAN) of
Microsoft [29] or Google [30], the period (time slot span)
for each time’s update configuration is around 5 minutes
while the service delay is in the magnitude of seconds.
In each time slot, the viewer sends his/her video content
request r(f, b, α, u) to his/her local edge cloud u, where f
denotes the requested file content with bitrate level b, and
α is the requested transmission rate. In this paper, we use
place and cache interchangeably. Moreover, we assume that
each viewer can receive the video content from the local
edge area via a unique available channel. We, therefore, do
not take the wireless delay from viewers to the local edge
area into account for brevity in this paper. The reason is that
this part of value only depends on the channel bandwidth
and file content size [31] in this context and hence cannot be
further optimized/minimized.

3.1 Video Streaming Delay Calculation Model

In general, the video streaming delay of viewer at edge area
u which requires f with bitrate level b can be calculated as:

T (u, v) + Γv(f, b, β) (1)

where T (u, v) denotes the path delay from u to v where f is
placed. Since a video content may traverse multiple interme-
diate nodes and links, so We use T (u, v) to approximately
represent the sum of transmitting delay and propagation
delay in this paper. Clearly, if f is placed on u (in this case
u = v), then the path delay is 0. Γv(f, b, β) indicates the
transcoding delay for f from current placed bitrate level
β to the requested bitrate level b. Video transcoding is to
encode video content into multiple representations, and we
consider that a lower bitrate variant can be obtained from
a higher bitrate variant via transcoding [9]. Γv(f, b, β) is a
nonlinear function with variables f , b and β according to
[32].

For example in Fig. 1, assuming there are 3 edge areas
and 1 CDN server, which are interconnected with each other
and the path delays are labelled on these links. Suppose
there are 4 requested video content files, and we let each
edge cloud store one video file with the bitrate level 1080p
and the CDN server contains all the video contents with all
the bitrate levels. For simplicity, the transcoding delay from
1080p to 720p for all the files is 50 ms. As shown in Fig. 1,
within the coverage of each edge area, the viewers request

2. According to [28], at most 6 paths in GÉANT network are enough
for serving 11460 traffic matrices during the entire 4-month duration
without violating Quality of Service (QoS). We, therefore, assume that
a (small) set of paths is sufficient for calculating the optimal solution.
This set of paths is precalculated and given in the problem.

E1

C

E2 E3

f2 f1 f3

f1,f2,f3,f4

80ms
100ms 120ms

8ms 12ms

15ms

Viewer1: f1,720p

Viewer3: f3,1080p Viewer4: f4,1080p

Edge Cloud

CDN Server

 Viewer2: f2,1080p

Transcoding delay: 15ms

Fig. 1: An example of video streaming delay calculation.

video content with different bitrate levels. For example,
since viewer 1 requires f1 with 720p bitrate level and f1
is placed in E2 with 1080p bitrate level, the streaming delay
is equal to: 8 (path delay) + 50 (transconding delay) = 68
ms. Even though f1 is also stored in CDN server, since
it consumes much longer path delay, it is preferable to
accommodate a request by using the edge cache. On the
contrary, since the required f4 is not placed on any of
the edge clouds, viewer 4 has to fetch the video content
from remote CDN server which causes a streaming delay of
15 + 80 = 95 ms by taking the (shortest) path E3-E1-C .

3.2 Problem Definition and Formulation

In this subsection, we formally define the (centralized) On-
line Video Content placement at the network Edge (OVCE)
problem as follows:

Definition 1. Given is a network G(N ,L) and for each time slot
t ∈ T , there is a set of video requests Rt. For each r(f, b, α, u) ∈
Rt, the OVCE problem is to place f on v (v ∈ Ne ∪ Nc) and
find the associated path3 from u to v to minimize the total time
average video streaming delay such that time average edge cloud
cost consumption is no greater than a specified value.

The OVCE problem is NP-hard in general. To prove
it, for simplicity we assume there is only one time slot
and we do not consider the streaming delay. In this sense,
the OVCE problem can be reduced to the NP-hard bin-
packing problem [33], which is to pack a set of items with
proper sizes into minimized number of given bins without
violating the bin’s capacity. Subsequently, we present an
exact solution to formulate the OVCE problem. For ease of
reading, the notations used in this paper are summarized in
Table 2.

3. It is worthwhile to mention that the distributed video content
placement scheme usually does not consider the routing issue, since
there is no global view of overall the network information. We, there-
fore, do not consider the routing issue in the distributed video content
placement problem in this paper. Consequently in the distributed video
content placement problem, one link (u, v) will be drawn with delay
value T (u, v) for two edge cloud nodes u, v ∈ Ne, if they are the
neighbor (nearby) edge areas.
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TABLE 2: Notations.

Notation Description

G(N ,L)
A network with set of nodes and links N and L. N = Ne ∪Nc ∪Ni, where Ne denotes the set of
edge cloud, Nc represents the CDN server and Ni indicates the intermediate nodes (e.g., router nodes)

η(n), ωn, πn The capacity of edge node n, the per-unit cost of transcoding on n, the per-unit cost of placing on n
c(l), T (pk), B The available capacity of link l, the delay of path pk , the set of bitrate levels

D(t), En(t), Cn
Total delay of all the requests at time t, the cost consumption of edge cloud n at time t, time average
cost constraint for node n

Γv(f, b, β) Transcoding delay for f from current cached bitrate level β to the requested bitrate level b
Sfβ The size of file f of the bitrate level β

Rt
The set of requests in time t. For each request r(f, b, α, u) ∈ Rt, f denotes the requested file content
with bitrate level b, α is the requested transmission rate, and u means its serving local base station

Hu,v
l,k

A given boolean array indicating whether link l is traversed by path pk between u and v

Xr,β
n,t

A boolean variable. It is 1 (true) if r is accommodated by the requested cached file with bitrate level β
on node n at time t, and 0 (false) otherwise

Y r,u,vk,t

A boolean variable. It is 1 (true) if r’s requested file is cached on v and pk ∈ Pu,v is selected at time t,
and 0 (false) otherwise, where u is the local edge cloud for r

Objective:

min
∀X,Y

lim
T→∞

1

T

T∑
t=1

∑
r∈Rt

 ∑
v∈Ne,k∈K

Y r,u,vk,t · T (pk)+ (2)

+
∑

n∈Ne,β∈B
Xr,β
n,t · Γn(f, b, β)


Placement Constraints:∑

n∈N

∑
β∈B

Xr,β
n,t = 1 ∀t ∈ T, r ∈ Rt (3)

∑
v∈N

∑
pk∈Pu,v

Y r,u,vk,t = 1 ∀t ∈ T, r ∈ Rt (4)

Path Selection Constraint:∑
pk∈Pu,v

Y r,u,vk,t =
∑
β∈B

Xr,β
v,t ∀t ∈ T, r ∈ Rt, v ∈ Ne (5)

Edge Cloud Capacity Constraint:∑
β∈B,f ′∈F :f ′==f

max
r∈Rt

Xr,β
n,t · S

f ′

β ≤ η(n) ∀t ∈ T, n ∈ Ne (6)

Link Capacity Constraint:∑
r(f,b,α,u)∈Rt

∑
v∈N

∑
pk∈Pu,v

Y r,u,vk,t ·Hu,v
l,k · α ≤ c(l) ∀t ∈ T, l ∈ L

(7)

Edge Cloud Cost Consumption Constraint:

lim
T→∞

1

T

T∑
t=1

∑
r∈Rt

∑
β∈B

Xr,β
n,t · (S

f
β − S

f
b )ωn+ (8)

∑
f∈F,β∈B

max
r(f,b,α,u)∈Rt

(
Xr,β
n,t · S

f
β · πn

) ≤ Cn ∀n ∈ Ne
Eq. (2) minimizes the long-term total video streaming

delay over all the requests. More specifically, for each time
slot t and each request r ∈ Rt,

∑
v∈Ne,k∈K Y

r,u,v
k,t · T (pk)

calculates the path delay, and
∑
n∈Ne,β∈B X

r,β
n,t · Γn(f, b, β)

calculates the transcoding delay. As a result, Eq. (2) returns
the time average total delay over all the time slots. Eqs. (3)-
(4) ensure that each request should be accommodated by
placing a video file with one bitrate level on one node.

The above two placement constraints are set for variables
Xr,β
n,t and Y r,u,vk,t , respectively, and Eq. (5) establishes the

equality relation betweenXr,β
n,t and Y r,u,vk,t . More specifically,

Eq. (5) indicates that when r places f on v, only one path
between u and v can be selected to use. In case u = v which
means that the video content is placed on its local edge
cloud, the dummy path u − u with traversing delay of 0
and consumed bandwidth of 0 will be used. Eq. (6) ensures
that the capacity of each edge cloud cannot be exceeded.
In particular, there may exist the case when two or more
requests access the same video file with the same bitrate
level on n, but n only needs to store one copy of the required
video file. That is why a max function is taken for all Xr,β

n,t in
Eq. (6). Eq. (7) ensures that the capacity of each link cannot
be exceeded. In order to avoid congestion, c(l) can be set
to be less the link’s full capacity. Eq. (8) is the long-term
cost constraint for each edge cloud node, which ensures that
the time average cost consumption for edge cloud n should
not be greater than a given value Cn. More specifically,
for each time slot t and each request r(f, b, α, u) ∈ Rt,
Xr,β
n,t · (Sfβ − Sfb )ωn calculates the transcoding cost4, and

maxr∈Rt

(
Xr,β
n,t · S

f
β · πn

)
calculates the cost for placing f

with bitrate level β on n. It is worthwhile to mention that
when a decision is made to place a video file on a node, the
video file will be migrated from the local edge cloud or the
CND server by following a path. In this paper, we assume
to use a greedy approach by copying a video file from
the nearest node and using the shortest path. Accordingly,
the placing cost here can implicitly represent the sum of
maintaining cost for placing the file, the migration cost, and
the re-routing cost.

Eqs. (2)-(8) is an Integer Nonlinear Programming (INLP)
formulation, because Γn(f, b, β) is a nonlinear function and
Xr,β
n,t and Y r,u,vk,t are boolean variables. INLP has exponential

computational complexity, which cannot be used in practice.
Moreover, Eqs. (2)-(8) require the complete offline knowl-
edge of Rt over all time slots, which is difficult to obtain in
practice. In the following, we will present a centralized on-
line video content placement framework without requiring
traffic requests over all time slots as well as a distributed

4. In this paper, we assume that the size of a video file is proportional
with the bitrate level and adopt the transcoding cost model similar to
[34].
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video content placement algorithm.

4 A CENTRALIZED ONLINE VIDEO CONTENT
PLACEMENT FRAMEWORK

In this section, we present a centralized Online Video Con-
tent Placement framework (OVCP) and then prove it has
a performance guarantee compared to an offline optimal
solution. The proposed framework leverages on the Lya-
punov optimization technique [35], and it can transform the
original long-term optimization problem in Eqs. (2)-(8) to
short-term (per time-slot) optimization problem, which only
requires the current time-slot information. We then apply
an ADMM method to solve each short-term optimization
problem.

4.1 Lyapunov-based Online Video Content Placement
Framework

Eq. (8) is a long-term edge cloud cost constraint, which is
also a major challenge to directly solve the optimization
problem in Eqs. (2)-(8). To tackle it, we resort to the
Lyapunov technique and transform Eq. (8) into a queue
stability problem. More specifically, we introduce a
virtual queue Qn(t) for each edge cloud n and initially
assume that Qn(0) = 0, ∀n ∈ Ne. Denote En(t) =( ∑
r∈Rt

∑
β∈B

Xr,βn,t · (S
f
β − S

f
b )ωn +

∑
f∈F,β∈B

max
r(f,b,α)∈Rt

(
Xr,βn,t · S

f
β · πn

))
as the total cost consumption of edge cloud at time t. In
time slot 1,2, . . . , T , we have following queueing dynamic
equation for each edge cloud n’s virtual queue:

Qn(t+ 1) = max[Qn(t) + En(t)− Cn, 0] (9)

where Qn(t) denotes the queue backlog of edge cloud n
in time slot t representing the deviation of the current
edge cloud n’s cost consumption. In particular, we regard
En(t) as the “arrival” of virtual queue Qn(t) and Cn as the
“departure” of the virtual queue.

Next, let Q(t) = {Qn(t)} denote the vector of all the
virtual queues ∀n ∈ Ne, we define the following Lyapunov
function:

L(Q(t)) =
1

2

∑
n∈Ne

Q2
n(t) (10)

According to [35], the queue backlog can be understood as
an amount of work that needs to be done. In this sense,
L(Q(t)) can reflect the “congestion level” of all the virtual
queues. A small value of L(Q(t)) implies that the backlogs
of all the queues are small, which means that all the virtual
queues have strong stability.

In order to keep the virtual queues stable, that is, to
enforce edge cloud cost constraint by persistently pushing
the Lyapunov function towards a lower congestion level, we
introduce ∆(Q(t)), which is a one-slot Lyapunov drift:

∆(Q(t)) = E[L(Q(t+ 1))− L(Q(t))|Q(t)] (11)

It follows that:

∆(Q(t)) = E[L(Q(t+ 1))− L(Q(t))|Q(t)] (12)

=
∑
n∈Ne

E[L(max[Qn(t) + En(t)− Cn, 0])− L(Qn(t))|Q(t)]

=
1

2

∑
n∈Ne

E[max(Qn(t) + En(t)− Cn, 0)2 −Q2
n(t)|Q(t)]

�
≤ 1

2

∑
n∈Ne

E[E2
n(t) + C2

n + 2Qn(t)(En(t)− Cn)|Q(t)]

=
1

2

∑
n∈Ne

E[C2
n + E2

n(t)|Q(t)] +
∑
n∈Ne

E[Qn(t)(En(t)− Cn)|Q(t)]

≤W +
∑
n∈Ne

E[Qn(t)(En(t)− Cn)|Q(t)]

where W = 1
2

∑
n∈Ne E[C2

n + max(E2
n(t)]) and inequal-

ity � comes from the fact that [max(a + b − c, 0)]2 ≤
a2 + b2 + c2 + 2a(b − c). According to [35], if a policy
greedily minimizes the Lyapunov drift ∆(t) in each time
slot, then all backlogs are consistently pushed towards a
low level, which potentially maintains the stability of all
queues. Therefore, we jointly consider the queue stability
and objective function by minimizing both drift function
and the objective function as in Eq. (13), which is called
drift-plus-penalty.

∆(Q(t)) + V · E[
∑
r∈Rt

(
∑
v,k

Y r,u,vk,t · T (pk)

+
∑
n,β

Xr,β
n,t · Γn(f, b, β))] (13)

For brevity, we denote D(t) =
∑
r∈Rt

(
∑
v,k
Y r,u,vk,t · T (pk) +∑

n,β
Xr,β
n,t · Γn(f, b, β) as the sum of delay for all the requests

at time t. Together with Eq. (12), Eq. (13) yields:

∆(Q(t)) + V · E[D(t)] (14)

≤W +
∑
n∈Ne

E[Qn(t)(En(t)− Cn)|Q(t)] + V · E[D(t)]

where V ≥ 0 is a control parameter to choose a tradeoff
between the optimality and queue backlog. Consequently,
we propose an Online Video Content Placement framework
(OVCP) in Algorithm 1 to solve the OVCE problem. More
specifically, in each time slot t, OVCP obtains values of
Qn(t) and En(t) and video requests Rt. After that, OVCP
solves (P1) in Eq. (15) by obtaining video content placement
and routing strategies. Accordingly, the queue backlog will
be updated in the next time slot.

(P1) min
∑
n∈Ne

Qn(t)En(t) + V ·D(t) (15)

subject to (3)− (7)

However, we notice that directly solving (P1) consumes
exponential computational time since it is an INLP, which
is intractable in practice. Next, we will present an ADMM-
based approach that can converge quickly to solve (P1).

4.2 An ADMM Approach to solve P1

In this subsection, we present an alternating direction
method of multipliers (ADMM)-based approach to solve P1.



7

Algorithm 1: OVCP

Input: G(N ,L), R
Output: Video content placement and routing paths

decisions over different time slots
1 for t← 0 to T do
2 Observe Qn(t) and En(t)
3 Receive the traffic requests Rt
4 Solve (P1)
5 Update Qn(t+ 1) = max[Qn(t) + En(t)− Cn, 0]

ADMM [36] works in the procedure of a decomposition-
coordination, where the solutions to small local subprob-
lems are coordinated to find a solution to a large global
problem. ADMM works in the following general form:

min f(x) + g(y) (16)
subject to: ax+ by = c

where x and y are variables with the equality constraint,
and f(x) and g(y) are convex functions. The augmented
Lagrangian function in ADMM is expressed as:

I(x, y, µ) = f(x) + g(y) + µ>(ax+ by − c) +
ρ

2
‖ax+ by − c‖2

(17)

where µ is the Lagrangian multiplier and ρ is the penalty
parameter. As a result, ADMM works iteratively as follows
in a sequential manner until convergence or a stopping
criterion is satisfied:

xk+1 := arg min
x
I(x, yk+1, µk) (18)

yk+1 := arg min
x
I(xk+1, y, µk)

µk+1 := µk + ρ · (axk+1 + byk+1 − c)

In our situation, we aim to apply ADMM to solve (P1). To
that end, we first expand the objective in Eq. (15) as the
following:

∑
n∈Ne

Qn(t)

∑
r∈Rt

∑
β∈B

Xr,β
n,t · (S

f
β − S

f
b )ωn+ (19)

∑
f∈F,β∈B

max
r(f,b,α)∈Rt

(
Xr,β
n,t · S

f
β · πn

)+

V

(∑
r∈Rt

(Y r,vk,t · T (pk) +Xr,β
n,t · Γn(f, b, β))

)

For ease of notation, in the following we use f(X) and
g(Y ) to denote the terms containing X and Y in Eq. (19),
respectively.

f(X) =
∑
n∈Ne

Qn(t)

∑
r∈Rt

∑
β∈B

Xr,β
n,t · (S

f
β − S

f
b )ωn+ (20)

∑
f∈F,β∈B

max
r(f,b,α)∈Rt

(Xr,β
n,t · S

f
β · πn)

+ V ·Xr,β
n,t · Γn(f, b, β)

g(Y ) = V · (
∑
r∈Rt

Y r,vk,t · T (pk)) (21)

Algorithm 2: ADMM-based Algorithm to solve (P1)

Input: G(N ,L), R
Output: Video content placement and routing paths

decisions at time t
1 Repeat until convergence:
2 Xk+1 := arg minX Iρ(X,Y k+1,µk)
3 Y k+1 := arg minX Iρ(Xk+1, Y,µk)

4 µk+1
i := µki + ρ ·Hk+1

i , where 1 ≤ i ≤ 5

Moreover, we notice that Eqs. (6) and (7) are inequality
constraints, and we need to transform them into equality
constraints in order to fit the required form of ADMM.
Without loss of generality, for a constraint h(x) < 0,
we can equivalently transform it into context constraint
max{0, h(x)}2 = 0 according to [37]. In this way, Eqs. (6)
and (7) can be transformed into equality constraints. Sub-
sequently, Eq. (15) can be transformed into the following
optimization formulation:

min f(X) + g(Y )

s.t.



H1(X) :=
∑
n∈N

∑
β∈B

Xr,β
n,t − 1 = 0

H2(Y ) :=
∑
v∈N

∑
pk∈Pu,v

Y r,u,vk,t − 1 = 0

H3(X,Y ) :=
∑

pk∈Pu,v
Y r,u,vk,t −

∑
β∈B

Xr,β
v,t = 0

H4(X) := max{0,
∑
β,f ′

max
r∈Rt

Xr,β
n,t · S

f ′

β − η(n)}2 = 0

H5(Y ) := max{0,
∑

r(f,b,α)∈Rt

∑
v∈N

∑
pk∈Pu,v

Y r,vk,t H
u,v
l,k α

−c(l)}2 = 0
(22)

Accordingly, in Eq. (23) we define the augmented La-
grangian function and we devise Algorithm 2 to solve (P2).

Iρ(x, y,µ) = f(x) + g(y) +
5∑
i=1

µ>i Hi(•) +
5∑
i=1

ρ

2
‖Hi(•)‖2

(23)

Theorem 1. Algorithm 2 can converge in finite steps and return
the optimal solution.

Proof. The proof follows similarly to Theorem 1 in [37] and
we have omitted it due to space limitation.

4.3 Performance Analysis

Theorem 2. The proposed OVCP in Algorithm 1 employing
Algorithm 2 can achieve the following performance guarantee:

lim
T→∞

1

T

T∑
t=0

E{D(t)} ≤ P ∗ +
W

V
(24)

lim
T→∞

1

T

T∑
t=0

∑
n∈Ne

E{Qn(t)} ≤ W + V P ∗

ε
(25)

where P ∗ represents the optimal solution for problem (P1), ε >
0 is a constant denoting the distance between the time average
cost consumption and cost budget, and W = 1

2

∑
n∈Ne E[C2

n +
max(E2

n(t)]) is a constant parameter defined in Eq. (12).
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Proof. The proof follows similarly from [35], and we omit its
details due to the space limitation.

Theorem 2 reveals that OVCP can achieve a
[O(1/V ), O(V )] tradeoff between delay and queue backlog.
By setting an arbitrarily large V for OVCP, it can achieve
the optimal performance in terms of time average stream-
ing delay. Such performance is achieved at the expense of
increasing queue backlogs as shown in Eq. (25), which has a
linear relationship with V . Another observation is that [38],
if we set the constraintCn too tight, it is not possible to place
all the requested video files. In this sense, OVCP will have
to place a subset of R on the remote CDN server.

5 A DISTRIBUTED VIDEO CONTENT PLACEMENT
FRAMEWORK

In this section, we devise a Distributed Multi-Agent-
based algorithm with Value Decomposition mechanism
and Parallelization of policy network updating (DMVP) for
video content placement problem. We start with the prelim-
inary introduction of Multi-Agent Reinforcement Learning
(MARL). Then, we demonstrate the DMVP’s design for
the distributed video content placement framework. After
that, we detail the DMVP algorithm with the VD credit
assignment scheme and improved parallelization on policy
network updating. Finally, we analyze the convergence of
DMVP.

5.1 Preliminary of MARL

Markov Decision Process (MDP), a premise of RL, refers to
a process where the current state only depends on the last-
time-slot state. An RL agent takes its action to interact with
the environment. The environment uses transition probabil-
ity function p(s′|s, u) to complete the state transition and
return the next-time-slot state s′. Also, it uses the global
reward function to calculate the return reward r. It aims to
learn the policy that maximizes the accumulative discount
reward

Rct =
∑∞
l=1γ

lrt+l (26)

where γ is the discount factor.
There exist multiple RL agents that can simultaneously

interact with the network environment in MARL, which
breaks up the MDP premise for each agent. The most im-
portant issue of MARL is the non-stationary state transition
caused by the state’s disordered changes due to the simul-
taneous execution of multiple actions. Hence, the MARL
model takes a joint action U composing of each agent’s
action u to avoid the non-stationary state changes of each
agent, which can make the whole MARL model satisfy the
MDP premise. At the same time, the environment returns
a global reward r based on joint action U and the current
state s. We adopt a cooperative MARL pattern among all
agents to maximize the globally accumulative reward Rc.
Also, we assume that each agent only has an ability of local
observation rather than global knowledge in order to reduce
the frequently large-size information transmission.

CDN

Edge environment

Edge 1
……

request

Edge n

request

Centralized 
credit assignment

Agent 1 Agent n

u1 [u1,…,un]

o1,u1,r,s,s`

experience 
pool

un

[o1,…,on], [u1,…,un],  r, s, s`

...

mini-batch mini-batch

joint v(s),v(s`) 
to update Agent 1

joint v(s),v(s`)
to update Agent n 

actor

on,un,r,s,s`

 v(on),s,s`v(o1),s,s`

observation reward

advantage 
TD error

value function

policy

action

critic

v(s),v(s`)

observationreward

advantage 
TD error

value function

policy

action

critic

v(s),v(s`)

actor

Fig. 2: The distributed video content placement framework.

In single agent Actor-Critic method, each agent’s policy
updating with a mini-batch experience by using advantage
Temporal Difference (TD) error is shown as follows:

θ = θ + α∀θlogπ(a|τ)(Q(s, a)− V (s)) (27)

where α is the learning rate, τ is the mini-batch sampled
from the experience buffer pool. Q(s, a) − V (s) is the
advantage function. a is the current action. Q(s, a) is the
state-action reward value which is estimated by Q(s, a) =
r + γV (s′) by taking the action a with the state s following
agent’s policy π. s′ is the next-time-slot state. γ is the
discount factor of accumulation reward. Especially, V value
is the critic network’s output that denotes the state value
(the estimated reward after the state s occurred), which can
evaluate the policy performance of actor network. Here, we
adopt the actor-critic framework for each distributed agent
to learn its own video content placement policy.

5.2 Design of Proposed Distributed Framework
Fig. 2 depicts the distributed video content placement
framework: there are totally Ne (for simplicity, we use n
to denote Ne in Fig. 2) edge clouds, and each of them
is equipped with an actor-critic RL agent. Moreover, a
centralized credit assignment model is used to control each
agent’s policy evaluation from a global perspective by tak-
ing the global state s as input. In time slot t, all agents
take their actions to form the joint action Ut = [u1t , ..., u

n
t ].

Then, edge environment uses Ut with a set of observations
Ot = [o1t , ..., o

n
t ] to complete the state transition and return

the global reward rt as well as the next-time-slot global state
s′t. A historical record tuple including < Ot, Ut, rt, st, s

′
t >

is inserted into the experience buffer pool. Then, each edge
cloud takes batch size mini-batch records to train its own
RL agent (including policy network and critic network).
The credit contribution of each agent is uploaded to the
credit assignment tool on CDN that is trained by mini-
batch < v(o)t, rt, st, s

′
t >. Next, the joint credit V (s) is

used to update the distributed RL agents by calculating
the advantage TD error. Even though a centralized server
is needed in Fig. 2 (only) for a small-scale state information
transmission and no weight exchanges, it makes Fig. 2 not
a fully distributed framework. Nevertheless, the local state
is still private for each edge cloud and does not need to
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be shared among different edge clouds. To measure the
contributions to the global optimized objective from each
edge cloud, part of the parameters are shared in the central-
ized server. To guarantee privacy and decrease expenditure,
we set the global state information, which is transmitted
between the centralized server and edge clouds during the
learning process of our distributed method, to be in a small
size. Next, we design each RL agent as follows:

5.2.1 Episode, Step and Constraints
In each time slot t, a set of requests Rt is collected from dif-
ferent edge areas. We regard a completed response process
of Rt as an episode. Each RL agent decomposes an episode
into |Rt| steps, where a request r(f, b, n) with video file f
of bitrate b from its local edge cloud n is accommodated
by DMVP. Hence, the limitation of an episode’s life span in
time slot t is set as a constant |Rt|.

There are two considered constraints in the learning
process of DMVP: the capacity constraint and the cost con-
sumption constraint. However, the constraint judgement of
DMVP is executed at the end of the algorithm, which wastes
more cost for RL agents. In order to amend the learning
direction in time, we convert Eq. (6) to Eq. (28) and convert
Eq. (8) to Eq. (29).∑

β∈B,f ′∈F :f ′==f

max
r∈R′t

Xr,β
n,t ∗ S

f ′

β ≤ η(n)

∀t ∈ T,R′t ∈ Rt, n ∈ Ne
(28)

∑
r∈R′t

∑
β∈B

Xr,β
n,t · (S

f
β − S

f
b )ωn+

∑
f∈F,β∈B

max
r(f,b,α,u)∈R′t

(
Xr,β
n,t · S

f
β · πn

)
≤ Cn

∀t ∈ T,R′t ∈ Rt, n ∈ Ne

(29)

where R′t is a subset of Rt with size of ts. It denotes
the requests that occur before ts steps. In each step of an
episode, Eq. (28) and Eq. (29) determine whether an agent
can take its action uts on ts-th step.

5.2.2 Observation and Action
For an RL agent n ∈ Ne, its observation on on ts-th step
consists of the storage information of each video file and the
residual capacity information, which is denoted by

on = [Zf,βn,ts, Cn,ts] ∀f ∈ F, β ∈ B (30)

where Zf,βn,ts is 1 if video file f with bitrate β has already
been placed in edge cloud n on ts-th step, and 0 otherwise.
Cn,ts denotes the residual capacity of each edge cloud,
which is calculated by

Cn,ts =η(n)−
∑

f∈F,β∈B
[Zf,βn,ts ∗ S

f
β ])

∀ts ∈ |Rt|, n ∈ Ne
(31)

So, each agent’s observation size is |F | ∗ |B|+ 1.
For a requested file f with bitrate b, agent n’s action

uf,bn,ts is set as 1, which means agent n can place this file in
its edge cloud on ts-th step of an episode, and 0 otherwise.
So, the joint action U for the request r(f, b, n) is denoted by
U = [uf,b1,ts, ..., u

f,b
Ne,ts

].

5.2.3 Joint Observation, Action and State

The joint observation O is denoted by [o1, o2, ..., on], where
oi in Eq. (30) is generated by the interaction between the
edge cloud agent i and edge environment as shown in
Fig. 2. The joint action U is denoted by [u1, u2, ..., un], where
ui represents the action taken by agent i in the current
iteration. The joint observation O and the joint action U
are just regarded as storage forms in the experience pool.
When via mini-batch sampling, they are split into a series of
individual o and u that are input into each agent, as shown
in Fig. 2. The joint state s, denoted by [Cn,ts] with the size of
|Ne|, is the input of the centralized credit assignment model,
which is globally collected by CDN.

5.2.4 Reward

Recall the definition in Eq. (1), we denote a utility function
in Eq. (32) for DMVP by calculating the global reward on
each step of an episode.

Uts =
c

T (m,n|rts(f, b, n)) + Γn(f, b, β|rts(f, b, n))
(32)

where T (m,n|rts(f, b, n)) is the path delay of request
rts(f, b, n) which is sent from n and responded on m. It
is set as 0 when m == n. If there is no file f with bitrate b,
we search f with high-bitrate to accommodate the request
rts by transcoding from bitrate B to bitrate b that causes
the cost Γn(f, b, β|rts(f, b, n)). Especially, when edge cloud
n accommodates rts(f, b, n) by video file f with bitrate b,
we use an extra reward c

rext
(rext is a much smaller value)

to encourage the learning process.

5.3 Credit Assignment and An Improved Policy Net-
work Update

5.3.1 Credit Assignment Based on Value Decomposition

The credit assignment mechanism is the basis of the co-
operation among distributed agents. Each agent’s decision
can affect the joint video content placement policy by the
global reward. The contributions to the joint policy opti-
mization from all distributed agents are completely different
because each agent has respective updating progress of
distributed policy. The agent with a faster learning process
can contribute more to the global reward, which brings a
sharp increase in the return reward. The advantage function
Q(s, U) − V (s) of MARL suddenly becomes bigger, which
can cause the agent with a slower learning process to miss
its local optimum policy. We introduce the credit assignment
mechanism which can deal with the inconsistent updating
of distributed agents by a credit assignment tool. It can
avoid “lazy agent” (seldomly updating its policy) when the
global reward becomes larger due to other agents’ positive
policies. The credit assignment tool is implemented by
Value Decomposition (VD) scheme [39] which can control
the distributed critic network updating by inputting each
distributed v and defining their loss L(ω) with the output
V tot(s) of the Mixing network, as is shown in Fig. 2.

The centralized critic network can also provide a global
evaluation of all agents’ policies [40]. But it depends on the
frequent large-size observation information transmission
between edge clouds and CDN. As we all know that better
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Fig. 3: Parallelization of policy network update.

policies for all distributed agents can bring a better perfor-
mance of the whole model. Hence, we adopt the VD scheme
by introducing the Mixing network whose weights are all
non-negative to verify the positive correlation between dis-
tributed V (o) value and global V (s) value. Hypernetwork,
consisting of a single linear layer with ReLU activation
function, takes the global state s as input to generate the
Mixing network’s weights and bias as is shown in Fig. 3. In
order to avoid a large amount of information transmission,
we set the global state input of the Mixing network as the
features including the number of idle storage units in each
edge cloud.

Based on the global V (s), the distributed critic network
with parameter ω is updated to minimize the following loss
on time slot t:

Lt(ω) = (yt − V (st))
2 (33)

= (yt − fmix(Vω1(o1t ), ..., Vωn(ont )))2

where yt =
∑k−t−1
i=t γiri + γk−tV tot(sk) is the global accu-

mulative reward from the last state sk. k is upper-bounded
by the episode length. fmix denotes the Mixing network,
a non-negative non-linear map between V (o) and V (s) in
Fig. 3. It is noted that Mixing network’s parameter is also
updated by Eq. (33).

5.3.2 An Improved Policy Network Update

To implement an approximately distributed decision-
making for video content placement, we equip each edge
agent with both actor policy network and critic network.
Then, the VD scheme is introduced to implement coopera-
tion among all agents via the centralized credit assignment
model (Mixing network). It has a slower learning process
with taking the small-scale state information with a lower
frequency of information transmission. Hence, we must
provide more accurate v(o) values of each agent for the
credit assignment model in each joint updating process to
speed up the learning process. We improve the updating
of the policy network resort to parallelization and sharing
the feature abstraction between the policy network and the
critic network in each edge agent, as is shown in Fig. 3.
The details of updating the policy network are specified as
follows:

Firstly, we extend the policy gradient of distributed actor
network by Proximal Policy Optimization (PPO) [41] to

relieve the weakness caused by stable learning step size
of the advantage function A(s, U). Kullback-Leible (KL)
divergence [42] is proposed based on relative entropy the-
ory, which is used to measure the difference between two
kinds of distributions. For the policy distribution (π(·|o) and
πold(·|o)) of discrete action variables, their KL divergence is
extended as

KL[πold(·|o), π(·|o)] =
∑
u

πold(u|o)log
πold(u|o)
π(u|o)

(34)

which can measure the difference between new and old
policy network model. Because of its asymmetry property
(KL[πold(·|o), π(·|o)] 6= KL[π(·|o), πold(·|o)]) [42] which can
bring more noisy step size for the advantage function value,
we therefore replace KL divergence as π(uat |o

a
t )

πold(uat |oat )
in loss

function

Lt(θ
a) = min(rt(θ

a)Aoldt , clip(rt(θ
a), 1− ε, 1 + ε)Aoldt )

(35)

where rt(θa) =
πt(u

a
t |o

a
t )

πold(uat |oat )
. clip() function with threshold

ε (usually set as 0.02 [41]) is used to filter the over-large
or over-small advantage value Aoldt for each agent. Further,
mini value is used to avoid missing better policy. For elabo-
rated calculation, we define the policy probability outputted
from the Softmax layer shown in Fig. 3 as

π(uat |oat ) = π(µat |oat ) + π(σat |oat ) (36)

where µ and σ are used to randomly select action uat
through Gaussian distribution. To calculate policy loss, we
need to store the policy network parameter θt−1 of each
agent in advance. Then, we can obtain πold(u

a
t |oat ) and

π(uat |oat ) through inputting oat respectively into the policy
network θold and θ in time slot t to calculate rt(θa).

Secondly, in order to speed up the convergence of
training return, we parallelize K policy networks (called
“workers”) that asynchronously interact with parallelized
networking environments to minimize original advantage
TD loss from time slot t. Hence, the loss function in Eq. (35)
is improved as the following:

Lt(θ
a) = Et[min(rt(θ

a)Âoldt , clip(rt(θ
a), 1− ε, 1 + ε)Âoldt )]

(37)

where Âoldt is an estimated value (mean) of advantage
function with old policy (parallelized workers’ policy), cal-
culated by

Âoldt = −Vold(ot) + rt + ...+ γT−t+1rT−1 + γT−tVold(oT )
(38)

where γ is the discount factor. T is the time step, until when
each parallelized model runs the policy from time slot t. The
target policy network is updated by the parallelized worker
that has the highest action probability π(ut|ot).

Lastly, we add the entropy item of target action distri-
bution on each time slot to avoid the over-convergence as
Eq. (39).

Lt(θ
a) = Lt(θ

a) + κH(πa(∗|oat , πat−1)) (39)

where κ is a non-negative hyperparameter of entropy item
H(∗). High entropy enlarges the range of action probability
which can improve agent’s exploration performance.
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5.4 Convergence Analysis of DMVP

We use the following lemma to substantiate the local con-
vergence of the proposed DMVP.

Lemma 1. For the improved method, its policy gradient

gk = Ek[min(5θk logr(θ)Âold,
clip(5θk logr(θ), 1− ε, 1 + ε)Âold)] (40)
+ κ5θk H(π(∗|ot, π′))

at each iteration k, lim inf k || 5 L|| = 0.

Proof. For parallelized workers, its policy updating follows
the gradient

g′ = Eπ[
∑
a

∇θlogπ(u|τa)A(s,u)] (41)

whereA(s,u) = Q(s,u)−Vtot(s) is the Temporal Difference
(TD) error of a distributed critic. We decompose g′ through
g′ = g′1 + g′2 to prove each part’s convergence, where

g′1 = Eπ[
∑
a

∇θlogπ(ua|τa)Q(s,u)]

= Eπ[∇θlog
∏
a

π(ua|τa)Q(s,u)]
(42)

which yields a standard single-agent actor-critic policy gra-
dient that converges to a local maximum of the expected
return [39]. And,

g′2 = −Eπ[
∑
a

∇θlogπ(ua|τa)V (s)]

= −Eπ[∇θlog
∏
a

π(ua|τa)V (s)]
(43)

where the joint policy is written as a product of independent
actors. Hence, V (s) can be calculated by f(V (o1), ..., V (on))
where f is a non-negative function (Mixing network). [39]
proved that g′2 converges to 0 resorting to the conversion
from the policy expectation to a discounted ergodic state
distribution.

For target policy network, omitting the entropy item, we
have:

g = Eπ[Fmix(∇θlogr(θ)Â)] (44)

where Fmix represents the positive coefficient of credit
assignment. So, we arrive at:

g ≈ Eπ[λ1∇θlogr(θ1)Â1 + ...+ λn∇θlogr(θn)Ân]

= Eπ[∇θlog
∏
a

[r(θa)Âa]λa ] (45)

where λi > 0, i ∈ {1, ..., n}. Eq. (45) yields a standard
single-agent PPO policy gradient Eπ[∇θlogr(θa)Âa], which
means that a TD error-based PPO (KL divergence: r(θ) =
π(u|o)
πold(u|o) ) can converge to a local optimal policy of a loss
function with an entropy item [43]. The proof is therefore
complete.

After that we can guarantee the local convergence of
DMVP’s policy gradient including the parallelized workers’
an the target policy network’s. Via the training process
(guided by the policy gradient gk that can locally conver-
gence to 0), DMVP can learn a local optimal policy for

the selection of joint action U to obtain a locally largest
accumulated reward which is related to the joint policy

U =

|Rt|∑
ts=0

Uts (46)

where Uts is calculated by Eq. (32). Correspondingly, we can
obtain a locally smallest Objective in Eq. (2), as we define in
problem definition.

6 SIMULATIONS

6.1 Simulation Setup
6.1.1 Centralized Scheme
In the centralized video content placement scheme, we use
the tool GT-ITM [44] to generate one MEC network topology
with 40 nodes in a 100 units * 100 units square. We let 10
out of 40 nodes be the edge cloud nodes, and all the other
30 nodes be the intermediate nodes. The capacity of each
edge cloud node is set to 5 Gb. For each link, its capacity
is randomly picked in [1, 2] Gb/s and its delay takes value
in [10, 40] ms. For simplicity, we add one more node as
the CDN server node and connect it with each edge cloud
node with a set of paths whose delay falls in the range of
[200, 400] ms. There are in total 40 video files with 5 bitrate
levels, which are 360p, 480p, 720p, 1080p and 1440p. The
required bandwidth and transcoding delay for a video file
with different bitrate levels are shown in Table 3 according
to [6] and [45]. The video access pattern is assumed to follow

TABLE 3: Bandwidth and transcoding delay.

Versions (p) 1440 1080 720 480 360
bandwidth (Mbps) [45] 6 3 1.5 0.5 0.4
transcoding delay(s) [6] NA* 0.27 0.19 0.16 0.13

*This value will not be used since transcoding can only happen from a
high bitrate level to a low bitrate level [8].

the Zipf distribution according to [5], and each video file fi
(1 ≤ i ≤ 40) with bitrate level j (1 ≤ j ≤ 5) has an accessing
probability: pij = (i∗j)−z∑

1≤a≤A a
−z ,∀1 ≤ a ≤ A, where

A = 40 ∗ 5 = 200 is the number of all the distinct video
files with different bitrate levels and z is set to 0.8 which
denotes the aggregation degree of video requests similar to
[8]. Without loss of generality, we regard that the video file
consists of a series of same-duration chunks (the duration
is set 10 seconds in this case), and each 10-seconds chunk
takes up 0.5 Mb according to [46]. We first set Sfβ ∈ [50, 500]
Mb, where β = 1440p. Afterwards, for a same video file f
with bitrate level β′ in {360p, 480p, 720p, 1080p}, we set
Sfβ′ = β′

1440 · S
f
1440. Accordingly, we set ωn ∈ [0.01, 0.1] and

πn ∈ [0.01, 0.12] [47], where n ∈ Ne. The transmission rate
for all the requests is set to 20 Mb/s for simplicity. Due to the
lack of workload trace of public accessible video requests
in MEC, we randomly generate 100 requests among all the
edge areas in each time slot, and we generate such 100
requests for 150 time units in total. We set K = 10 and
Cn = 3000 for all n ∈ Ne. We first set V = 1 in OVCP and
compare OVCP with following three algorithms:

• Delay-Opt: It only minimizes the video streaming
delay without considering the cost consumption in
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Fig. 4: Performance of centralized video content placement algorithms.

TABLE 4: Parameter setting in distributed algorithm

Parameter Setting Parameter Setting

α 0.005 γ 0.9

buffer size 1000 |R| 40

batch size 32 κ 0.01

workers’ quantity 4 ε 0.02

workers’ step size |R| c 100

MixingNet-embed-dim 32 HyperNet-edbed-dim 32

FC/GRU units 64 edge node capacity 5Gb

T in parallelization t+ 20 rext 5

each time slot. Delay-Opt can therefore provide a
(loose) lower bound of video streaming delay.

• Cost-Opt: It only focuses on minimizing the total cost
consumption without caring about video streaming
delay in each time slot. Cost-Opt can therefore pro-
vide a (loose) lower bound of cost consumption.

• Myopic Caching: It imposes a hard cost constraint
Cn in each time slot and runs the optimization for-
mulation in Eqs. (2)-(8) to minimize the total video
streaming delay. In case there is no feasible solution
because of a large number of requests in some time
slot(s), Myopic will iteratively remove one request
from Rt and run the optimization again. This process
continues until a solution is returned or R is empty.

The simulation for the centralized method was run on a
high-performance desktop PC with 8 core 3.40GHz Intel(R)
Core(TM) i7-6700 processors and 16 GB memory. We use
IBM ILOG CPLEX (CPLEX Callable Library interface) 12.6
with Java 1.8.0 221 to implement the centralized algorithm.

6.1.2 Distributed Scheme

The simulation setup of the distributed video content place-
ment scheme is the same as the centralized simulation
setting, such as the edge node density, the distribution of re-
quests, the number of video files, and so on. The distributed
algorithm adopts the delay-greedy method to deal with path
selection. Moreover, we set the number of video files as 200

in an RL episode. Other parameter settings of our MARL-
based algorithm are listed in Table 4. We compare our
distributed algorithm DMVP with the following 3 methods:

• Independent Actor-Critic [48] (IAC): It is a Multi-
Agent method with Actor-Critic model without ap-
plying the credit assignment and each agent in IAC
is independent and not interfering.

• Multi-Agent Deep Deterministic Policy Gradient
[49] (MADDPG): This method performs a central-
ized learning process and distributed deployment
at the expense of frequent large-scale information
exchanges.

• Multi-Agent Value Decomposition Actor-Critic [39]
(VDAC): It is similar to DMVP but without improved
policy network updating.

For distributed video content placement simulation, the pro-
posed framework is executed by Pytorch 1.9.0 with Cuda
11.1.

6.2 Simulation Results
6.2.1 Centralized Video Content Placement Scheme
Fig. 4(a) and Fig. 4(b) respectively show the time average de-
lay and costs over different time slots. We see from Fig. 4(a)
that Delay-Opt can always achieve the lowest average delay
value. The reason is that Delay-Opt always tries to place the
requested video file on the local or nearest edge clouds in
order to minimize the streaming delay without considering
whether it is expensive to store files on the node. In this
sense, Delay-Opt consumes the largest cost consumption,
as shown in Fig. 4(b). Our proposed OVCP can obtain the
second lowest delay value by satisfying the long-term cost
constraint, which verifies its correctness and shows its per-
formance efficiency. Myopic has a higher time average delay
than OVCP, because Myopic does not efficiently make use of
cost constraint in a long-run perspective. More specifically,
due to the reason that in each time slot a cost constraint Cn
is imposed for each edge cloud node, it happens that the per
time slot constraint Cn can be far above the needed cost in
some slots. It also happens that Cn is far below the needed
cost in some slots for high-demanding traffic, and in order to
meet the constraint, some of the requests have to be rejected,
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Fig. 5: Performance of proposed centralized OVCP algorithm.
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Fig. 6: Performance of distributed video content placement algorithms.

and this will “save” more cost. This also reflects the effect of
long-term cost constraint Cn on the performance of video
streaming delay and total cost consumption. Meanwhile,
Cost-Opt has the highest average streaming delay since it
is a delay-oblivious algorithm and always places the file in
order to minimize the total cost consumption. In this sense,
Cost-Opt consumes the lowest cost as seen in Fig. 4(b).
Myopic has a total time average cost consumption less than
Cn ·Ne as shown in Fig. 4(b) and achieves the second lowest
cost consumption. OVCP can achieve the third lowest cost
consumption and obtains a close performance with Myopic
when T = 150, which indicates that OVCP always tries to
reduce the total cost consumption in a best-effort manner.

Fig. 5(a) illustrates the time average streaming delay
and time average queue backlog values with different V .
As V increases from 1 to 400, the time average delay
values decreases, which is proved in Eq. (24) in Theorem
2, and the time average backlog values increases, which
is reflected in Eq. (25) in Theorem 2. As a result, Fig. 5(a)
shows that OVCP can achieve a tradeoff between delay
minimization and queue stability, corresponding to Theo-
rem 2. We then evaluate the convergence of Algorithm 2.
To do that, we set Q(n) = 1 for n ∈ Ne. We randomly
generate one time slot traffic R and run Algorithm 2 to

solve (P1), where f(X) + g(Y ) represents the total objective
function in Eq. (22). Fig. 5(b) reveals that the ADMM-based
algorithm can converge in 20 (finite) steps, which verifies
the correctness of Theorem 1. Moreover, we also directly
run the exact solution in Eq. (15) to solve the same problem
instance, where we can see that Algorithm 2 can achieve the
same performance after convergence with the exact solution.
This has also verified the correctness of Algorithm 2.

6.2.2 Distributed Video Content Placement Scheme

Fig. 6 shows the performance analysis on streaming de-
lay and cost consumption of DMVP with IAC, MADDPG,
VDAC. All algorithms have a similar setting of common
hyperparameters. We execute 1000 episodes to verify the
reliability of each distributed algorithm and respectively
discuss the learning results from time average streaming
delay and cost consumption. As is shown in Fig. 6(a), DMVP
achieves the lowest streaming delay performance and the
smallest cost consumption performance after convergence,
although its learning speed is slower than MADDPG in
the initial training stage. MADDPG adopts a centralized
training method in which an integrated RL agent with a
large-scale state input learns the optimal placement policy
on CDN. Because of the lower frequency of exploration on
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Fig. 7: Utility value of DMVP under different parameters.
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Fig. 8: Performance of DMVP under different problem settings.

the policy network, VDAC and MADDPG finish conver-
gence early at about 400 episodes. IAC does not obtain a
good result when facing such a complicated optimization
task due to the completely non-stationary and the lack
of cooperation among all distributed agents. The limited
number of bitrate leads to a violent oscillation in cost
consumption even though it is calculated by time average.
By comparing Fig. 6(a) and Fig. 4(a), we can see that our
distributed algorithm DMVP has comparable performance
to our centralized algorithm OVCP on the time average
streaming delay when they deal with the problems with the
similar setup.

Fig. 7 shows the performance of DMVP with different
hyperparameters. Fig. 7(a) shows the learning rate adjust-
ment of distributed policy network and distributed critic
network. We can see that larger learning rates with 0.05
and 0.01 lead to a slower convergence for DMVP and
smaller learning rates with 0.0005 and 0.001 make DMVP
falls into the local optimal in advance. In particular, DMVP
under learning rate 0.005 can obtain a better performance
no matter on convergence speed or final utility value after
convergence of about 200 episodes. Fig. 7(b) shows the
influence of the number of parallelized workers on time
average utility. We can see that few parallelized workers
(e.g., 1 worker) can cause a non-smooth learning process

in the initial training stage. On the contrary, DMVP with
4 parallelized workers for each agent can achieve better
performance. Moreover, We also change the problem scale
by increasing the number of requests generated in each
edge cloud area and the number of video files that can be
requested. Fig. 8(a) demonstrates that more requests result
in a larger time average streaming delay. This is because,
when the number of requests increases, most agents can
hardly satisfy all local requests because of storage limitation
and have to relay requests to remote CDN, which incurs
larger path delay. Fig. 8(b) shows the streaming delay
performance of all the algorithms with different number
of video files. We see that the number of video files does
not impact the streaming delay performance of all the algo-
rithms with a clear trend, but DMVP can always achieve the
smallest streaming delay performance. In all, Fig. 8 verifies
that DMVP behaves scalable and effectively under different
problem settings.

6.2.3 Comparison between centralized and distributed
methods

Based on the same simulation setup in Section 6.2.1 and
6.2.2 and in order to compare them fairly, on the one hand,
we choose the time-average performance of OVCP during
150 time slots. On the other hand, for DMVP, we adopt
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Fig. 9: Comparison between centralized and distributed
methods.

the performance of DMVP during the training process after
convergence based on the pre-adjusted hyper parameters.
Fig. 9 demonstrates the comparison respectively of time av-
erage streaming delay and time average cost consumption.
We can see that the distributed method DMVP performs
better in terms of time average streaming delay than the
centralized method OVCP. It is because the greedy-delay
path forwarding selection plays a more important role than
cost optimization during the learning process of DMVP.
Accordingly, as shown by the blue histogram in Fig. 9, the
time average cost consumption of DMVP is larger than the
centralized method OVCP’s. This comparison result also
reflects and corresponds to the working paradigm of these
two algorithms. Centralized OVCP focuses on the long-term
system performance regarding the time-average delay by
obeying a long-term time average cost constraint. DMVP
works in a distributed manner and always tries to accom-
modate the request in local or nearby edge cloud greedily
by a reward function, which neglects the cost consumption
and hence whole system performance.

To conclude, the advantages of the centralized method
OVCP lie in globally guaranteed system performance and
less/no hyper-parameter adjustment. The disadvantages of
OVCP are its overhead for obtaining the global network
view and the failure of the central decision-maker node.
The advantages of the distributed method DMVP are less
information exchanging and updating overhead and effi-
cient response on a well-trained model. The disadvantages
of DMVP are its cost for hyper-parameter configuration
and model training, as well as no theoretical performance
guarantee.

7 CONCLUSION

In this paper, we study the video content placement problem
at the network edge from both centralized and distributed
perspectives. We first devise a centralized online video con-
tent placement framework by leveraging the Lyapunov op-
timization technique to decompose the considered problem
into a series of one-time-slot problems and then apply an
ADMM-based method to solve each one time-slot problem.
We prove that the proposed framework has an O(V, 1/V )
tradeoff between video streaming delay and queue backlog.

We further propose a distributed multi-Agent-based algo-
rithm by introducing value decomposition to implement
credit assignment among all edge clouds and improving
the policy updating method by parallelization. Simulation
results reveal that our proposed centralized Online Video
Content Placement (OVCP) framework can achieve arbi-
trarily close-to-optimal total time average video streaming
delay while still maintaining the long-term individual edge
cloud cost budget. Moreover, our distributed video content
placement algorithm can be verified to achieve lower time
average delay compared to the contrast methods and has
strong robustness on a large-scale edge cloud environment.

It is worthwhile to mention that our proposed solutions
are general to solve the video content problem in edge
computing, which means that they can also deal with real-
world experimental scenario. On the one hand, we try
to simulate the real-world scenario as much as possible
in our work. The video requests are generated according
to [5], which follows similarly with the real-world video
request scheme in edge network from Youtube in recent
years. The edge network topology is randomly generated
with various distances and node capacities. The value of
bandwidth, types of video bitrate, and transcoding delay
in the simulation are chosen according to the real-world
applications. Based on these simulation setup, we evaluate
the performance for centralized and distributed solutions.
On the other hand, our solutions are also feasible for the
larger-feature space resorting to their advantages of lower
complexity and convergence improvement. Therefore, the
proposed solutions are expected to perform efficiently and
effectively in the real-world experimental scenario.

ACKNOWLEDGMENTS

The work of Song Yang is partially supported by the Na-
tional Natural Science Foundation of China (NSFC) under
Grant No. 62172038. The work of Fan Li is partially sup-
ported by the NSFC under Grant No. 62072040. The work of
Pan Zhou is partially supported by NSFC under grant no.
61972448. The work of Xiaoming Fu is partially supported
by the EU H2020 RISE COSAFE project under Grant No.
824019. Song Yang is the corresponding author.

REFERENCES

[1] “Cisco visual networking index (vni) global and
americas/emear mobile data traffic forecast, 2017–2022,” 2019.
[Online]. Available: https://www.cisco.com/c/dam/m/en us/
network-intelligence/service-provider/digital-transformation/
knowledge-network-webinars/pdfs/190320-mobility-ckn.pdf

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[3] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative service
caching and workload scheduling in mobile edge computing,” in
IEEE INFOCOM, 2020.

[4] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking: Past,
present, and future of programmable networks,” IEEE Communi-
cations surveys & tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[5] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic charac-
terization: a view from the edge,” in Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, 2007, pp. 15–28.

[6] F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun et al., “Intelligent
edge-assisted crowdcast with deep reinforcement learning for
personalized QoE,” in IEEE INFOCOM, 2019, pp. 910–918.



16

[7] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement learn-
ing approach,” in IEEE INFOCOM, 2020.

[8] Z. Qu, B. Ye, B. Tang, S. Guo, S. Lu, and W. Zhuang, “Cooperative
caching for multiple bitrate videos in small cell edges,” IEEE
Transactions on Mobile Computing, vol. 19, no. 2, pp. 288–299, 2020.

[9] T. X. Tran and D. Pompili, “Adaptive bitrate video caching and
processing in mobile-edge computing networks,” IEEE Transac-
tions on Mobile Computing, vol. 18, no. 9, pp. 1965–1978, 2018.

[10] K. Bilal, E. Baccour, A. Erbad, A. Mohamed, and M. Guizani,
“Collaborative joint caching and transcoding in mobile edge net-
works,” Journal of Network and Computer Applications, vol. 136, pp.
86–99, 2019.

[11] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, “Joint
configuration adaptation and bandwidth allocation for edge-based
real-time video analytics,” in IEEE INFOCOM, 2020, pp. 1–10.

[12] Y. Wang, Y. Zhang, X. Han, P. Wang, C. Xu, J. Horton, and J. Cul-
berson, “Cost-driven data caching in the cloud: an algorithmic
approach,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 2021, pp. 1–10.

[13] R. Li, L. Wang, Y. Gong, M. Song, M. Pan, and Z. Han, “Dynamic
cache placement, node association, and power allocation in fog
aided networks,” in IEEE Global Communications Conference, 2019,
pp. 1–6.

[14] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2021.

[15] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent NFV middleboxes,” in IEEE
INFOCOM, 2017.

[16] C. You and L. M. Li, “Efficient load balancing for the VNF deploy-
ment with placement constraints,” in IEEE International Conference
on Communications (ICC), May 2019, pp. 1–6.

[17] H. Hawilo, M. Jammal, and A. Shami, “Network function
virtualization-aware orchestrator for service function chaining
placement in the cloud,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 3, pp. 643–655, 2019.

[18] M. A. Khoshkholghi, M. Gokan Khan, K. Alizadeh Noghani,
J. Taheri, D. Bhamare, A. Kassler, Z. Xiang, S. Deng, and X. Yang,
“Service function chain placement for joint cost and latency op-
timization,” Mobile Networks and Applications, vol. 25, no. 6, pp.
2191–2205, 2020.

[19] S. Yang, F. Li, S. Trajanovski, R. Yahyapour, and X. Fu, “Recent ad-
vances of resource allocation in network function virtualization,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2,
pp. 295–314, 2021.

[20] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and
L. Tassiulas, “Distributed caching algorithms in the realm of
layered video streaming,” IEEE Transactions on Mobile Computing,
vol. 18, no. 4, pp. 757–770, 2018.

[21] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and X. Tao, “Distributed
online learning of cooperative caching in edge cloud,” IEEE Trans-
actions on Mobile Computing, 2020.

[22] J. Moura and D. Hutchison, “Game theory for multi-access edge
computing: Survey, use cases, and future trends,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 1, pp. 260–288, 2018.

[23] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 3, pp. 515–529, 2019.

[24] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Communications
Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[25] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep multi-agent
reinforcement learning based cooperative edge caching in wireless
networks,” in ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1–6.

[26] M. Yeh, C.-H. Wang, J. Lee, D.-N. Yang, and W. Liao, “Mobile
proxy caching for multi-view 3d videos with adaptive view selec-
tion,” IEEE Transactions on Mobile Computing, 2020.

[27] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal,
“Dima: distributed cooperative microservice caching for internet
of things in edge computing by deep reinforcement learning,”
World Wide Web, pp. 1–24, 2021.

[28] M. Leconte, A. Destounis, and G. Paschos, “Traffic engineering
with precomputed pathbooks,” in IEEE INFOCOM, 2018.

[29] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer, “Achieving high utilization with
software-driven wan,” in Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, 2013, pp. 15–26.

[30] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
with a globally-deployed software defined wan,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[31] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 12, pp. 3590–3605, 2016.

[32] G. Gao, Y. Wen, and C. Westphal, “Dynamic priority-based re-
source provisioning for video transcoding with heterogeneous
QoS,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 29, no. 5, pp. 1515–1529, 2019.

[33] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman & Co.,
1979.

[34] Y. Jin, Y. Wen, and C. Westphal, “Optimal transcoding and caching
for adaptive streaming in media cloud: An analytical approach,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 12, pp. 1914–1925, 2015.

[35] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[36] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[37] J. Giesen and S. Laue, “Combining admm and the augmented
lagrangian method for efficiently handling many constraints.” in
IJCAI, 2019, pp. 4525–4531.

[38] Z. Zhou, F. Liu, R. Zou, J. Liu, H. Xu, and H. Jin, “Carbon-aware
online control of geo-distributed cloud services,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 9, pp. 2506–2519,
2015.

[39] J. Su, S. Adams, and P. A. Beling, “Value-decomposition multi-
agent actor-critics,” arXiv preprint arXiv:2007.12306, 2020.

[40] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[42] S. Kullback and R. A. Leibler, “On information and sufficiency,”
The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[43] M. Holzleitner, L. Gruber, J. Arjona-Medina, J. Brandstetter, and
S. Hochreiter, “Convergence proof for actor-critic methods ap-
plied to ppo and rudder,” in Transactions on Large-Scale Data-and
Knowledge-Centered Systems XLVIII. Springer, 2021, pp. 105–130.

[44] K. Calvert and E. Zegura, “Gt-itm: Georgia tech internetwork
topology models,” 1996.

[45] “Live stream on youtube: Choose live encoder settings,
bitrates, and resolutions,” 2020. [Online]. Available: https:
//support.google.com/youtube/answer/2853702?hl=en

[46] J. Summers, T. Brecht, D. Eager, and B. Wong, “To chunk or not to
chunk: Implications for http streaming video server performance,”
in Proceedings of the 22nd international workshop on Network and
Operating System Support for Digital Audio and Video, 2012, pp. 15–
20.

[47] Z. Xu, L. Zhou, S. C.-K. Chau, W. Liang, Q. Xia, and P. Zhou,
“Collaborate or separate? distributed service caching in mobile
edge clouds,” in IEEE INFOCOM, 2020, pp. 1–10.

[48] M. Tan, “Multi-agent reinforcement learning: Independent vs. co-
operative agents,” in Proceedings of the tenth international conference
on machine learning, 1993, pp. 330–337.

[49] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments,” arXiv preprint arXiv:1706.02275, 2017.



17

Yanan Gao received the B.S. degree from the
School of Computer Science and Technology,
Shandong University of Science and Technol-
ogy, Qingdao, China, in 2015, and the M.S.
degree in software engineering from Beijing
Forestry University, Beijing, China, in 2020. She
is currently a Ph.D. student at the School of
Computer Science and Technology, Beijing In-
stitute of Technology. Her research interests
include deep learning, reinforcement learning,
federated learning, and their applications to

cloud/edge computing.

Song Yang is currently an associate professor
at the School of Computer Science in Beijing
Institute of Technology, China. Song Yang re-
ceived the B.S. degree in software engineering
and the M.S. degree in computer science from
Dalian University of Technology, Dalian, Liaon-
ing, China, in 2008 and 2010, respectively, and
the Ph.D. degree from Delft University of Tech-
nology, The Netherlands, in 2015. From August
2015 to August 2017, he worked as postdoc
researcher for the EU FP7 Marie Curie Actions

CleanSky Project in Gesellschaft für wissenschaftliche Datenverar-
beitung mbH Göttingen (GWDG), Göttingen, Germany. His research
interests focus on data communication networks, cloud/edge computing,
and network function virtualization.

Fan Li received the PhD degree in computer
science from the University of North Carolina
at Charlotte in 2008, MEng degree in electrical
engineering from the University of Delaware in
2004, MEng and BEng degrees in communi-
cations and information system from Huazhong
University of Science and Technology, China in
2001 and 1998, respectively. She is currently a
professor at the School of Computer Science in
Beijing Institute of Technology, China. Her cur-
rent research focuses on wireless networks, ad

hoc and sensor networks, and mobile computing. Her papers won Best
Paper Awards from IEEE MASS (2013), IEEE IPCCC (2013), ACM
MobiHoc (2014), and Tsinghua Science and Technology (2015). She
is a member of IEEE and ACM.

Stojan Trajanovski received his PhD degree
(cum laude, 2014) from Delft University of Tech-
nology, The Netherlands and his master degree
in Advanced Computer Science (with distinction,
2011) from the University of Cambridge, United
Kingdom. He is currently an applied scientist in
Microsoft, working in London, UK and Bellevue,
WA, USA. He was in a similar role with Philips
Research in Eindhoven, The Netherlands from
2016 to 2019. Before that, he spent some time
as a postdoctoral researcher at the University

of Amsterdam and at Delft University of Technology. He successfully
participated at international science olympiads, winning a bronze medal
at the International Mathematical Olympiad (IMO) in 2003. His main re-
search interests include network science & complex networks, machine
learning, game theory, and optimization algorithms.

Pan Zhou is currently a full professor and PhD
advisor with Hubei Engineering Research Cen-
ter on Big Data Security, School of Cyber Sci-
ence and Engineering, Huazhong University of
Science and Technology (HUST), Wuhan, P.R.
China. He received his Ph.D. in the School
of Electrical and Computer Engineering at the
Georgia Institute of Technology (Georgia Tech)
in 2011, Atlanta, USA. He received his B.S. de-
gree in the Advanced Class of HUST, and a
M.S. degree in the Department of Electronics

and Information Engineering from HUST, Wuhan, China, in 2006 and
2008, respectively. He held honorary degree in his bachelor and merit
research award of HUST in his master study. He was a senior technical
member at Oracle Inc., America, during 2011 to 2013, and worked on
Hadoop and distributed storage system for big data analytics at Oracle
Cloud Platform. He received the “Rising Star in Science and Technology
of HUST” in 2017, and the “Best Scientific Paper Award” in the 25th
International Conference on Pattern Recognition (ICPR 2020). He is
currently an associate editor of IEEE Transactions on Network Science
and Engineering. His current research interest includes: security and
privacy, big data analytics, machine learning, and information networks.

Pan Hui received his PhD from the Computer
Laboratory at University of Cambridge, and both
his Bachelor and MPhil degrees from the Uni-
versity of Hong Kong. He is a Professor of
Computational Media and Arts and Director of
the HKUST-DT Systems and Media Lab at the
Hong Kong University of Science and Technol-
ogy (HKUST). He is also the Nokia Chair in Data
Science at the University of Helsinki. He has
founded and chaired several IEEE/ACM confer-
ences/workshops, and has served as track chair,

senior program committee member, organizing committee member, and
program committee member of numerous top conferences including
ACM WWW, ACM SIGCOMM, ACM Mobisys, ACM MobiCom, ACM
CoNext, IEEE Infocom, IEEE PerCom, IEEE ICNP, IEEE ICDCS, IJ-
CAI, AAAI, and ICWSM. He served as an Associate Editor for IEEE
Transactions on Mobile Computing (2014-2019) and IEEE Transactions
on Cloud Computing (2014-2018), and as a guest editor for various
journals including IEEE Journal on Selected Areas in Communications
(JSAC), IEEE Transactions on Secure and Dependable Computing,
IEEE Communications Magazine, and ACM Transactions on Multimedia
Computing, Communications, and Applications. He is an International
Fellow of the Royal Academy of Engineering, an IEEE Fellow, an ACM
Distinguished Scientist, and a member of the Academia Europaea.

Xiaoming Fu received his Ph.D. in computer
science from Tsinghua University, Beijing, China
in 2000. He was then a research staff at the
Technical University Berlin until joining the Uni-
versity of Göttingen, Germany in 2002, where he
has been a professor in computer science and
heading the Computer Networks Group since
2007. He has spent research visits at universi-
ties of Cambridge, Uppsala, UPMC, Columbia,
UCLA, Tsinghua, Nanjing, Fudan, and PolyU of
Hong Kong. Prof. Fu’s research interests include

network architectures, protocols, and applications. He is currently an
editorial board member of IEEE Network, IEEE Transactions on Network
and Service Management, IEEE Transactions on Network Science and
Engineering, IEEE Networking Letters, and Elsevier Computer Commu-
nications, and has served on the organization or program committees
of leading conferences such as INFOCOM, ICNP, ICDCS, MOBICOM,
MOBIHOC, CoNEXT, ICN and COSN. He is an IEEE Fellow, an IEEE
Communications Society Distinguished Lecturer, an ACM Distinguished
Member, a fellow of IET and member of the Academia Europaea.


