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Tongue tumor detection in hyperspectral images
using deep learning semantic segmentation

Stojan Trajanovski*, Caifeng Shan*†, Pim J.C. Weijtmans, Susan G. Brouwer de Koning, and Theo J.M. Ruers

Abstract—Objective: The utilization of hyperspectral imag-
ing (HSI) in real-time tumor segmentation during a surgery
have recently received much attention, but it remains a very
challenging task. Methods: In this work, we propose semantic
segmentation methods and compare them with other relevant
deep learning algorithms for tongue tumor segmentation. To
the best of our knowledge, this is the first work using deep
learning semantic segmentation for tumor detection in HSI data
using channel selection and accounting for more spatial tissue
context and global comparison between the prediction map and
the annotation per sample. Results and Conclusion: On a clinical
data set with tongue squamous cell carcinoma, our best method
obtains very strong results of average dice coefficient and area
under the ROC-curve of 0.891 ± 0.053 and 0.924 ± 0.036,
respectively on the original spatial image size. The results show
that a very good performance can be achieved even with a limited
amount of data. We demonstrate that important information
regarding tumor decision is encoded in various channels, but
some channel selection and filtering is beneficial over the full
spectra. Moreover, we use both visual (VIS) and near-infrared
(NIR) spectrum, rather than commonly used only VIS spectrum;
although VIS spectrum is generally of higher significance, we
demonstrate NIR spectrum is crucial for tumor capturing in
some cases. Significance: The HSI technology augmented with
accurate deep learning algorithms has a huge potential to be a
promising alternative to digital pathology or a doctors’ supportive
tool in real-time surgeries.

Index Terms—Tumor Segmentation, Hyperspectral imaging,
Deep Learning.

I. INTRODUCTION

Worldwide, head and neck cancer accounts for more than
650,000 cases annually [1]. Tongue cancer is a specific case
of head and neck cancer, and patients suffering from tumors
in tongue tissue are generally treated by removing the cancer
surgically. Accurate segmentation of the tumor tissue from
the healthy part is challenging; besides tumor tissue, the
surgeon removes a margin of non-tumorous tissue around
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the tumor, which is called a resection margin in surgical
oncology [2]. Moreover, literature stresses the importance of
adequate resection margins, as it is a powerful predictor of the
5-year survival rate [3], [4], [5].

Smits et al. [6] conducted a clinical review regarding
resection margins in oral cancer surgery and found that 30% to
65% of the resection margins in surgical results are inadequate.
The removal of an oral tumor and determining the resection
margins are challenging procedures, since they rely on pal-
pation. This entails that the surgeon classifies tumor tissue
based experience and on the sense of touch and sight. The
accuracy of resection margins is assessed by pathologists and
they analyze the removed tissue after a surgery. This is time-
consuming process, and it is less effective since it provides
surgeons with information after the surgery instead of during
the procedure. From this perspective, there is an opportunity
for technological solutions to assist surgeons in the assessment
of tumor tissue and to determine adequate resection margins,
by providing real-time feedback during oral cancer surgery.
Moreover, there are no commonly accepted clinical standards
or adopted techniques for this purpose.

Hyperspectral imaging (HSI), originally developed for re-
mote sensing [7], has been successfully used in many fields
such as food quality and safety, resource control, archaeology
and biomedicine [8]. With advancements in hardware and
computational power, it has become an emerging imaging
modality for medical applications [9]. HSI has the potential
advantages of low cost, relatively simple hardware and ease of
use. This makes HSI a candidate for intra-operative support of
a surgeon. Compared to regular RGB images it is challenging
to process the HSI data due to the size of the data: hundreds
of color bands for each pixel in a patient image with a large
spatial size results in large files with varying amounts of
redundant information.

Previous studies have mostly focused on tumor classifica-
tion tasks [10], [11], [12], [13] in HSI images. Fei et al. [11]
have evaluated the use of HSI (450-900nm) on specimen from
patients with head and neck cancer. They achieved an area
under the ROC-curve (AUC) of 0.94 for tumor classification
with a linear discriminant analysis on a data set of 16 patients
in which 10 were verified to have squamous cell carcinoma
(SCCa). However, their testing was done on specimens from
the same patient as the classifier was trained on. Lu et al. [14]
and Halicek et al. [12] acquired multiple specimen from
50 head and neck cancer patients with 26 having squamous
cell carcinoma (SCCa) in the same visual spectral range
450-900nm. They [12] did a classification task with deep
convolutional neural networks on 25x25 patches with leaving-
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one-patient-out cross-validation and reported accuracy of 77%
for the SCCa group. Animal study on mice [15] with induced
tumors was conducted by Ma et al. [10], achieving an accuracy
of 91.36% with convolutional neural networks in a leave-one-
out cross-validation also for a classification task. A similar
animal study on prostate cancer and on head and neck cancer
in mice were conducted in [16] and [17]. Ravı̀ et al. [18] use
random forest-based approaches on hyperspectral images for
brain tumor segmentation. Other machine learning techniques,
minimum spanning trees [19], support vector machines [20],
[13], k-nearest neighbors algorithm [21], [22], naı̈ve [22]
Bayes, gaussian mixture models [23] and well-performing
deep learning architectures [24] (e.g., inception [25]), have
also be used for hyperspectral images, mostly for classification
tasks. In order to simplify and reduce the large number
of channels, standard techniques such as tensor decompo-
sition [26] or principal component analysis (PCA) [27] are
applied. In all mentioned studies the focus lies entirely on
spectral information in the visible range around 450-900nm.

All of the above research works: (i) have utilize only the
visible part of the spectra; (ii) have focused mainly on animal
cases; (iii) have mostly utilize PCA or other well-established
techniques for channels/dimensionality reduction; or (iv) have
mostly focused on classification task as a global malignancy
assessment per patient. However, the need of real-time and
precise intraoperative feedback requires accurate segmentation
between the tumor and non-tumor in human tissues. In this
work, we have examined several structural, spectral and se-
mantic segmentation deep learning models (such as U-Net [28]
variants) taking patches of images with all or predefined
channels selection, but assessing the global performance on
a per patient/specimen base. Compared to the previous work,
we have used much broader spectra utilizing both the visible
(VIS) and near-infrared (NIR) spectral ranges [29] that has
been rarely employed [30], [31], especially in the context of
deep learning methods. The contributions of the paper are the
following:

• With the best semantic segmentation method, we have
achieved competitive performance of average dice coef-
ficient and area under the ROC-curve of 0.891 ± 0.053
and 0.924± 0.036, respectively, in the leave-patients-out
cross-validation with on a clinical data set of 14 patients.

• We have demonstrated that the (often omitted) near-
infrared spectra are crucial: first for spotting/classifying;
and second for correctly segmenting the tumor tissue
in some cases, although VIS channels remain the most
significant ones for the performance on average.

• We have proposed a novel channel selection/reduction
technique, rather than standard reduction techniques that
eliminate pure channel information (e.g., PCA), and we
have demonstrated that there is a selected set of number
of channels that leads to optimal performance; meaning
that with smaller number of channels part of the signal
is lost and higher number of channels brings extra noise,
both contributing to reduced performance.

The remainder of the paper is organized as follows. Details
of the clinical dataset are given in Section II. The proposed

methods and the obtained results are provided in Section III
and Section IV, respectively. We conclude in Section V.

II. CLINICAL DATASET

The clinical data was collected at the Netherlands Cancer
Institute (NKI) - Antoni van Leeuwenhoek Hospital in Ams-
terdam, the Netherlands. Hyperspectral images of specimens
from 14 patients undergoing surgery for the removal of squa-
mous cell carcinoma of the tongue were acquired. All ethical
guidelines required for ex vivo human studies were followed.

(a)

(b)

Fig. 1: (a) A table shifts tissue under the camera. Lines are recorded
and assembled into a data volume. (b) The imaging system used to
collect the HSI data, where a tissue is placed on the table in the
bottom.

Directly after resection, the specimen was brought to the
pathology department, where the resection margins were inked
according to the routine clinical workflow. The pathologist
localized the tumor by palpation and subsequently cut the
specimen through the middle of the tumor. First, a RGB image
was taken from the cut surface with a regular photo camera.
Immediately after and without touching the specimen, the cut
surface of the specimen was imaged with two hyperspectral
cameras (Spectral Imaging Ltd., Oulu, Finland), one operating
in the visible wavelength range (VIS) and the other in the near-
infrared wavelength range (NIR). The instrumentation with
the hyperspectral cameras and the supporting equipment for
data acquisition are shown in Figure 1. After HSI imaging,
the specimen was subjected to further routine pathological
processing, and the pathologist annotated different tissue types
on the histopathology slide. Additional details on the data
acquisition can be found in [32].

Both HSI cameras are push broom line scan system. The
VIS camera captures 384 wavelengths in the 400nm-1000nm
range with 1312 samples per line, for 612 lines. The NIR
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(a) (b)

Fig. 2: (a) Annotation and registration of the hyperspectral data: tumor (red), healthy tongue muscle (green), and healthy epithelium or other
non-tumor tissue (blue). (b) Reflectance of the acquired data for VIS and NIR. (Blue curves, labeled as ”unknown”, represent epithelium or
other non-tumor tissue and it has been used with term ”non-tumor”, interchangeably.)

camera captures 256 wavelengths in the 900nm-1700nm range
with 320 samples per line, for 191 lines.

In order to label the HSI data, a histopathological slide
is taken from the surface that has been scanned. The slide
is digitized and delineated to mark the tumor (red), healthy
muscle (green) and epithelium & non-tumor tissue (blue).
This is the first step shown in Figure 2a. From the delin-
eation a mask is created. During histopathological processing
the specimen was deformed and to correct this, a non-rigid
registration algorithm is used. Obvious matching points in
the histopathological and RGB images were visually selected.
Using these points, the mask is transformed to match the
RGB picture. This is depicted in Figure 2a in middle row as
transformation T1. The point-selection [33] is done again on
the RGB and HSI data to derive transformation T2, which is
used to transform the mask again to match the HSI data. The
VIS and NIR datasets contain the same patients, therefore the
data cubes could be combined into a broad spectrum ranging
from 400nm to 1700nm. During the registration process, the
points that were used to determine the transformations were
stored, which could then be used to align the VIS and NIR
data cubes. Transformation T2 (NIR data) was inversed to
transform the HSI NIR to the RGB shape, and subsequently
transform T2 (VIS data) was applied to the VIS data. The NIR
data had a lower resolution, therefore it was up sampled during
the transformation. At this point, the data volumes had the
same shape and could be concatenated along the spectral axis.
Due to the overlap in spectral range, which was approximately
120nm, half of 120nm from VIS cube and the other half from
NIR were removed. Because the first and last bands of the data
cube were noisy, bands from both sets were removed instead of
removing from only the NIR or VIS cube. The reflectance as a

function of the wavelength depicted in Figure 2b demonstrates
that a merger/stack of VIS & NIR (top and bottom subfigures
if summed up) well captures the full spectra. See [32] for more
details on the data registration and preprocessing.

The number of pixels for the two datasets are shown in
Tables I and II. There is a small difference between the VIS
and NIR sets, despite they are made with the same tissue
and annotations. This could be explained in several ways. For
instance, the tissue could have moved between measurements,
causing a deformation of the tissue, or that the tissue was
imaged from a different angle. Another explanation might be
that the difference is a result of an error while transforming
the histopathological image to match the HSI data.

III. METHODS

Having the annotation masks along with the hyper-cube
allows for supervised machine learning. With the annotated
data at hand, we consider two types of methods: 1) pixel-wise
classification: spectral, structural, hybrid, 2) semantic segmen-
tation; and compare their performance. It is also important to
stress that we have a prediction for two classes: healthy1 and
tumor tissues.

A. Channel selection, spectral, structural and hybrid ap-
proaches

Using small patches spanning all bands the spectral infor-
mation can be captured. By selecting bigger patches, structural
information becomes available. By combining both inputs, the
full spectral and some structural information are available for
the network.

1As mentioned earlier healthy tissue accounts for epithelium, muscle and
other non-tumor tissue
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TABLE I: The number of pixels per patient in the SPECIM-VIS dataset. Patient 30 was the only patient without ‘non-tumor’ tissue in the
annotation. The term ‘non-tumor’ refers to epithelium or other ordinary or non-tumor tissue.

Patient ID Total Tumor Muscle Non-tumor Background
25 94K 9K 9.6% 7K 7.2% 2K 1.9% 77K 81.3%
26 30K 1K 3.5% 11K 34.9% 1K 3.1% 18K 58.5%
28 181K 25K 14.0% 16K 8.8% 16K 8.6% 124K 68.5%
29 52K 6K 12.2% 10K 19.1% 2K 3.2% 34K 65.5%
30 43K 3K 6.8% 13K 30.8% - - 27K 62.4%
31 45K 1K 2.1% 11K 23.6% 135 0.3% 34K 74.0%
33 33K 2K 7.7% 9K 27.8% 1K 3.7% 20K 60.8%
34 42K 1K 2.9% 15K 35.5% 1K 1.3% 26K 60.4%
35 33K 3K 8.0% 9K 26.4% 149 0.5% 22K 65.2%
36 36K 2K 5.1% 9K 25.0% 442 1.2% 25K 68.7%
37 39K 4K 10.8% 11K 28.8% 1K 3.2% 22K 57.2%
39 36K 3K 9.4% 10K 26.7% 2K 4.2% 21K 59.7%
40 34K 1K 3.5% 5K 15.0% 462 1.4% 27K 80.1%
41 40K 2K 5.1% 8K 20.9% 299 0.8% 29K 73.3%

Total 738K 65K 8.7% 143K 19.4% 26K 3.5% 504K 68.3%

TABLE II: The number of pixels per patient for the SPECIM-NIR dataset.

Patient ID Total Tumor Muscle Non-tumor Background
25 12,880 1,128 8.8% 919 7.1% 210 1.6% 10,623 82.5%
26 5,696 170 3.0% 1,185 20.8% 99 1.7% 4,242 74.5%
28 22,240 2,943 13.2% 1,900 8.5% 1,762 7.9% 15,635 70.3%
29 8,268 785 9.5% 1,012 12.2% 171 2.1% 6,300 76.2%
30 6,723 287 4.3% 1,470 21.9% - 0.0% 4,966 73.9%
31 6,237 80 1.3% 1,157 18.6% 13 0.2% 4,987 80.0%
33 4,615 253 5.5% 997 21.6% 113 2.4% 3,252 70.5%
34 6,059 127 2.1% 1,596 26.3% 59 1.0% 4,277 70.6%
35 5,780 290 5.0% 1,004 17.4% 15 0.3% 4,471 77.4%
36 5,159 220 4.3% 951 18.4% 48 0.9% 3,940 76.4%
37 6,624 460 6.9% 1,273 19.2% 157 2.4% 4,734 71.5%
39 5,330 380 7.1% 1,067 20.0% 161 3.0% 3,722 69.8%
40 5,168 117 2.3% 556 10.8% 51 1.0% 4,444 86.0%
41 6,160 205 3.3% 984 16.0% 26 0.4% 4,945 80.3%

Total 106,939 7,445 7.0% 16,071 15.0% 2,885 2.7% 80,538 75.3%

(a) (b)

Fig. 3: (a) Depth-wise convolutions outcome. (b) Behavior for the channel selection loss function.

1) Channel selection: The channel selection gives the most
important channels of a dataset. This step is also important as
it ranks/separates more important channels containing signal
from the less important ones containing noise, which im-
proves the performance. It is used in both pixel-wise and
semantic segmentation. The selection method is based on l1
regularization concept. By adding an additional layer between
the input and the first layer of the model, it is possible to
examine what weights are given to the channels. The patches
we use are three-dimensional and we want to find a subset of
channels, so a two-dimensional depth-wise convolution [35]
is used, with a 1x1 kernel and 1x1 stride (see Figure 3a).
The weights of this selection layer are constrained to range

from 0 to 1, to disable and enable channels respectively. To
encourage channels selection, an incentive is added. Without
this, all weights would simply be 1 and there would be no
effective change. l1 weight regularization is considered for this
incentive. With l1 the regularization parameter, wi is the layer
weight of matching channel i and n the number of channels.
The result J is added to the loss during training, so there
is a penalty on having non-zero weights. However, now all
weights will go to zero, some faster than others. Ideally, our
aim is that the important channels go to one and all others
go to zero. The formula is adapted by applying a function
to the weights before summing them and this is added to the
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Fig. 4: Benchmark neural networks, visualized using [34]. (a) Spectral neural network. (b) Structural neural network with channels filtering.
(c) Dual-stream spectral and structural neural network.

loss l1
n∑

i=1

(
1− ( |wi|

p − 1)2
)

. This function is a second degree

polynomial and has maximum 1 at p. The value of p is set at
.99 creating a small pocket at (0.99, 1) where the loss slightly
increases while the weight is reduced from 1 to .99. After that
small pocket, the loss will decrease until the weight is zero
as demonstrated in Figure 3b. More details of the selected
channels are given in Section IV.

2) Spectral neural network architectures: To exploit the
full extent of the spectral information, a network is designed
for using 1x1 patches including the full spectrum of the
HSI data. Five fully connected (FC) layers were used. The
first layer has as many units as wavelengths in the input

data (640 for stacked, where the contributions of VIS and
NIR are 384 and 256, respectively). The last layer is the
output layer, and therefore has only two units. The hidden
layers in between had 320, 160 and 80 units, and those
layers were followed by batch normalization to stabilize the
training process. The neural network is visualized in Figure 4a.
Alternatively, instead of fully connected layers, convolutional
neural networks [36] (i.e. shareable weights and translation-
invariant filters) have been also explored, but these resulted
in slightly worse or comparable performance. The next thing
worth considering is expanding to the spatial context of the
data cube. However, taking more pixels in a combination to
having all channels is becoming computationally challenging
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Fig. 5: U-Net based neural network architectures for HSI data. The visualization is drawn using PlotNeuralNet software [34]
(https://github.com/HarisIqbal88/PlotNeuralNet). (a) Singe-stream U-Net for stacked (VIS and NIR) patches. (b) Dual-stream U-Net based
with separate VIS and NIR streams.

(e.g., significantly slower or memory demanding) and it also
brings extra redundancy and possible conflicting context in
some of the channels with the annotation. Some channel im-
portance prioritization and filtering are in order as elaborated
in the following sections.

3) Structural neural network architectures: By increasing
the patch size, morphological features in the HSI data can be
used to classify the tissue. With the most important channels
known either reduced by the channels selection (as described
earlier) or alternatively a principle component analysis (PCA),
a model that focuses on structure can be trained. Data with
a high resolution will benefit the most from this approach, as
it will contain more structural information compared to low
resolution data. With 45 VIS channels selected and spatial
patch of 21 × 21, input data cubes are defined. The number
of VIS channels used have been selected empirically. We
conducted experiments with different number of channels, and
found that (i) initially the performance improved when more

channels were included; (ii) the performance did not get any
better when using more than 45 VIS channels [37, Page 19,
Figure 16]. This is followed by flattening which results in
19,845 input units. The network is similar to the spectral
model, with fully connected hidden layers and it is shown in
Figure 4b. The difference lies in the input shape and the first
fully connected layer. Instead of matching the number of units
of the flattened channel-filtered input, 1024 units are used. This
is done to reduce the number of parameters in the model. As
in the spectral neural networks, convolutional neural blocks
are also tried, but these result in worse or similar performance
over the fully connected layers.

4) Hybrid spectral & structural neural network architec-
tures: To utilize both spectral and structural contexts, we
derive a dual-stream spectral and structural model. The model
is designed, using a 1x1 patch that covers all wavelengths to
incorporate spectral features and a bigger patch with selected
channels for the structural information. The network is visu-

https://github.com/HarisIqbal88/PlotNeuralNet
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Fig. 6: The influence of the batch size on the training.

alized in Figure 4c. A spectral patch is selected from the data
volume, and fed into four fully connected layers. The first
of those layers has the same number of units as the amount
of wavelengths in the spectral sample. The following hidden
layers have 256, 128 and 64 units respectively. Additionally, a
structural patch is selected from the data using the channel
ranking as discussed in the channel selection section. The
patch is flattened and followed by four hidden dense layers
with 512, 256, 126 and 64 units. After concatenation of the
spectral and structural branches, four additional dense layers
follow with 64, 32, 16 and 2 output units. After every layer,
batch normalization is applied to stabilize the training process.

B. Semantic segmentation based on U-Net neural network
variants

Based on the hyper-cubes and corresponding annotations,
we create HSI input and annotation patches with wider spatial
context. The reason of using patches, with a fixed size per
experiment, is two-fold: (i) we have a limited data from 14
patients and in this way, we create a train and validation
cohort of patches that can lead to reasonable results and (ii) in
the semantic segmentation, the spatial dimensions (length and
width) of the HSI data cubes are different, thus some patching
is needed in order to have a unique input data shape for any
neural network. Moreover, having convolutional layers at the
initial layer still allows to examine the test performance on the
full spatial size for different patients with one predict forward
pass in the neural network without changing it at all. We use
leave-patients-out cross validation, thus there are never patches
from the same patient in both train and validation sets.

In our approach, we use 100 random patches of size
256× 256 for each patient with the central pixels being 50/50
tumor and healthy classes and appropriate channel selection
of the most significant channels as explained in Subsec-
tion III-A1. This means that we do 7-fold cross-validation
with 1200 patches (12 patients) of size 256 × 256× #chan-
nels for training and 200 patches (2 patients) for validation.
(We have conducted additional experiments having standard
train/validation/hold out set data partition or having nested
cross-validation – thus leaving less patients for reporting

results, but the results are similar to those with this partition
scheme.) Each patch contains both tumor and healthy tissue
and in fact, covers most of the spatial part of each HSI cube.
It depends on the tissue, but in each patch for training both
healthy and tumor tissues are decently represented. To achieve
better generalization, we apply standard data-augmentation
techniques such as rotation and flipping of the patches. As a
loss function dice coefficient is used for for training and valida-
tion that compares the overlap of the full-size prediction map
with the annotation map. Additionally, we have experimented
with alternative losses like the focal loss, but comparable
(or worse) and less stable results were obtained. Although,
this loss could be promising, it also brings two additional
parameters that have to be tuned. With these input patches
and annotations (size 256x256x2 tumor/no tumor), we train a
U-Net neural network [28] variant with batch normalization.
The architecture is visualized in Figure 5a.

In order to separately examine the contribution of the VIS
and NIR parts of the data cube, we derive dual-stream U-
Net based neural network. As visualized in Fig. 5b, there is
a separate stream/branch of the VIS and NIR accepting the
corresponding parts of the data cube, followed by appropriate
averaging or maximization for the final prediction.

1) Details on the training process: We have experimented
with different batch size and, as expected, reasonable batch
size of 16 or 32 leads to more stable validation curves
compared to smaller batch size (e.g., batch size of 4). This
is demonstrated in the Fig. 6 where the train and validation
learning curves per epochs are show for two experiments
that only differ in the batch size. We have experimented
with different loss optimizers like Adam [38], standard SGD
(Stochastic gradient descent), RMSprop [39] etc., but it seems
the performance is not affected much by this choice, thus we
decided for the former in most of the experiments. We have
experimented with different values of the learning rate and
values in the range 10−4 or smaller leads to slow validation
loss improvement per epoch and it might require many epochs
to achieve a decent validation loss. On the other hand, learning
rates in the range of 10−3 or bigger leads to having a perfect
train loss in the earlier epoch that often leads to overfitting
in some of the folds. Therefore, a moderate learning rate of
0.5× 10−4 is often the best choice although this can vary per
fold.

Fig. 7: Channel selection results.
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TABLE III: Results of the experiments with different deep neural networks.

Architecture Dice AUC Acc. Sens Spec
Structural 9x9 x 10ch (from VIS) (Fig. 4b) 0.793 0.855 0.769 0.738 0.839
Structural 21x21 x 45ch (from VIS) 0.744 0.844 0.811 0.755 0.838
Spectral NIR (Fig. 4a) 0.810 0.866 0.787 0.783 0.794
Spectral VIS 0.840 0.881 0.818 0.847 0.755
Spectral Stacked 0.839 0.917 0.844 0.795 0.894
Dual stream Stacked (Fig. 4c) 0.853 0.895 0.834 0.843 0.813
HSI U-Net NIR all 256ch (Fig. 5a) 0.821 0.879 0.932 0.801 0.957
HSI U-Net VIS all 384ch 0.860 0.915 0.948 0.866 0.964
HSI U-Net Stacked 32ch 0.848 0.893 0.938 0.828 0.959
HSI U-Net Stacked 64ch 0.870 0.912 0.950 0.857 0.968
HSI U-Net Stacked 128ch most important 0.891 0.924 0.958 0.873 0.975
HSI U-Net Stacked 256ch 0.870 0.914 0.951 0.860 0.968
HSI U-Net Stacked 128+64ch central 0.877 0.919 0.955 0.866 0.973
HSI U-Net Stacked 256+128ch central 0.864 0.923 0.953 0.879 0.967
HSI U-Net Stacked 128+64ch most important 0.851 0.910 0.948 0.855 0.966
HSI U-Net Stacked 88+64ch most important 0.851 0.909 0.948 0.851 0.967
HSI U-Net Stacked 64+64ch most important 0.878 0.923 0.956 0.874 0.972
HSI Dual U-Net 128+64ch central (avg. output) (Fig. 5b) 0.873 0.938 0.940 0.935 0.941
HSI Dual U-Net 88+40ch most important (avg. output) 0.870 0.926 0.947 0.896 0.956
HSI Dual U-Net 256+128ch most important (max output) 0.838 0.927 0.941 0.906 0.948

IV. RESULTS AND DISCUSSION

A. Channel selection

The proposed method starts with a selection of important
channels. Figure 7 (left) shows the weights of the selection
layer as the training progresses. The choice of channels does
not change over the epochs, but does become more distinct
as shown by the increasing weights of selected channels.
Figure 7 (right) shows the weights at epoch 30 and illustrates
how selected channels are clustered together. It also shows
that no channels are given the maximum weight in all folds
indicating that selected channels are given low weights in
some folds. From Fig. 7 (right), we can see that important
channels lie both in the VIS and NIR part of the spectra,
and it will be demonstrated later (see Fig. 10) that both are
crucial for spotting the tumor. There is a difference in the
selection band for a single patient and the conclusion on which
channels are more important is made based on all patients
thus those having recognized as the most important in the
majority of the patients being ranked higher as a cumulative
contribution across all patients. This is the only (i) fair and
general approach, (ii) it is important if we bring additional
data from a new patient to have this selection done a-priory
(and not repeating it over again for data that might not be
present anymore); and it is crucial for deployment in practice
as band selection is time consuming so inference phase is
more feasible in this way. A general conclusion is that the
very initial and very end bands are the least significant; while
various bands are quite important in the middle of the range
as well as reasonably at the beginning and close to the end in
the range. After the important channels are selected, we can
proceed with smaller size cube patch input with noise channels
filtered for the proposed neural networks.

B. Performance results and comparison

We evaluate the results of the proposed semantic segmenta-
tion method and compare it with the spectral, structural, dual-
stream pixel-wise approaches proposed. We also want to stress
that we have evaluated several other alternatives for: U-Net

depth, the number of input channels, regularization techniques,
hyper-parameter optimization, but due to space limitation, we
show the best and most representative results in Table III as
the others are worse or with comparable performance and
properties. We use several performance metrics like the dice
coefficient, the area under the ROC-curve (AUC), accuracy,
sensitivity, and specificity for evaluating the validation results.
Using all these performance metrics allows to evaluate the
performance reasonably, even when the tumor/healthy pres-
ence in the data is imbalanced without the need to choose a
classification threshold. The validation results of these metrics
are given in Table III2, showing that semantic segmentation by
HSI U-Net variant with 128 input channels that can capture
both spectral and spatial aspects has the best performance (in
bold). It is important to stress that by both using less and more
than 128 channels the performance is degraded (Table III) as
either some tumor information is ignored or some noisy chan-
nels dominate in the decision, respectively. It is also interesting
to mention that the proposed HSI U-Net variant still works
well, although starting with less initial filters compared to the
input channels, opposite to standard U-Net for RGB images
(where 3 channels are significantly less than the initial number
of filters), thus realizing an immediate pooling/selection effect.
With the best performing HSI U-Net, we achieve a mean dice
coefficient and AUC validation scores of 0.891 ± 0.053 and
0.924 ± 0.036, respectively. In Fig. 8, the performance on a
per-patient base is shown, demonstrating the algorithm works
well (with some reasonable variance) in all cases. In addition,
it is interesting to mention U-Net experiments with RGB
patches show significantly worse performance (around 0.8 for
both dice and AUC) than those with multiple HSI channels,

2(i) ”HSI U-Net Stacked Xch” refers to all 640 channels (384 VIS and 256
NIR) are stacked in a cube, channel importance selection algorithm is applied
and the X most significant are selected; (ii) ”HSI U-Net Stacked X + Y ch
central” means the central X VIS channels are selected (from 384 in total),
the central Y NIR channels are selected (from 256) and then they are stacked
together in a HSI cube; (iii) ”HSI U-Net Stacked X + Y ch most important”
means channel importance is separately applied for VIS and NIR, such that
the most important X VIS channels are selected, the most important Y NIR
channels are selected and then they are stacked together in a HSI cube.
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Fig. 8: Validation performance represented per patient by the dice coefficient, AUC, accuracy, sensitivity and specificity. On the x-axis are
the patient ID. (The ID values are not of particular meaning or importance.)

which suggests that the HSI channels richness is important
for improved precision. On the other hand, Halicek et al. [41]
conducted research focusing on this aspect and found HSI did
not provide significant advantages over the identification of
tumor margins in ex-vivo tissue compared to RGB imagery.
Therefore, we admit more in-depth research is needed in this
direction. To better illustrate the accuracy of the prediction
compared to the ground truth labels, we depicted the hard
prediction map and the ground truth maps for 4 patients in
Figure 9. It is also important to mention that although the
network is trained on fixed patches, the reported test results
are based on the original HSI dimension (that is different for
each HSI image) directly using the obtained model, because
the convolutional kernels of the initial layers can take arbitrary
input size with a single pass. We have done experiments with
U-Net networks of different number of layers, different units
per layer, different dropout values or other regularizers, but
the performance is worse or comparable to those reported in
Table III.

C. The importance of VIS and NIR channels

From the results in Table III, we can see VIS channels are
generally more significant that NIR for tumor segmentation.
However, there are rare cases where the NIR channels are the
most crucial and decisive for tumor segmentation, while the
tumor is not spotted by VIS channels. The importance of the
NIR spectral alone or even better in a combination with VIR
in a dual stream U-Nets architecture (Fig. 5b) is visualized
in Figure 10. In this figure, for this particular patient, we can
see that by using NIR channels, the algorithm captures the
tumor tissue, while this is not a case by using VIS channels
only. Although there are such cases as in Figure 10, which
highlights the importance of the NIR channels, in the majority
of the cases VIS channels are those contributing the most in
spotting the tumor tissue.

V. CONCLUSION

Real-time tumor segmentation during surgery is an im-
portant and challenging task. On the other hand, recent hy-
perspectral camera developments offer additional possibility

for better quality and more insights that can lead to more
accurate segmentation. Several techniques have been proposed
in the past, mostly based on standard machine learning and
pixel-wise approaches. To the best of our knowledge, this
is the first work using deep learning U-Net [28] semantic
segmentation for tumor detection and trainable channels se-
lection for both NIR and VIS HSI spectra. The proposed
semantic segmentation shows superior performance over the
other alternatives (average dice coefficient and area under the
ROC-curve of 0.891±0.053 and 0.924±0.036, respectively).
We also demonstrate that channel selection and filtering is
beneficial over the full spectra for achieving better perfor-
mance, that both VIS and NIR channels are important and
very good performance can be achieved even with a limited
amount of data. Moreover, we have shown that the often
omitted near-infrared (NIR) spectra is crucial for detecting the
tumor in some cases. The hyperspectral cameras have been
demonstrated to be powerful tools in many fields; and the
technology, augmented with accurate algorithms, has a huge
potential in biomedical engineering and medicine and with
promising results available could be a doctors’ supportive tool
for real-time surgeries and an alternative to digital pathology.
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