
2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

1

Survivable Task Allocation in Cloud Radio Access
Networks with Mobile Edge Computing

Song Yang, Member, IEEE, Nan He, Fan Li, Member, IEEE, Stojan Trajanovski, Member, IEEE,
Xu Chen, Member, IEEE, Yu Wang, Fellow, IEEE, and Xiaoming Fu, Senior Member, IEEE

Abstract—Cloud Radio Access Network (C-RAN) is a promis-
ing 5G network architecture by establishing Baseband Units
(BBU) pools to perform baseband processing functionalities
and deploying Remote Radio Heads (RRH) for wireless signal
transmission and reception. Mobile Edge Computing (MEC)
offers a way to shorten the service delay by building small-
scale cloud infrastructures at the network edge. By co-locating
BBU pool with edge cloud at the so-called BBU node, we can
take full advantages of C-RAN and MEC for better spectrum
utilization and delay-guaranteed services. In this paper, we first
study how to allocate each user’s task to BBU node and find
the path from his/her accessing RRH node to the BBU node
such that the maximum service delay among all the requests
is minimized. We then consider this problem with survivability
concerns, which is to use both primary and backup BBU nodes
to issue the request such that the primary path and backup
path are link-disjoint. We analyze the complexities of these two
problems and prove they are NP-hard in general. Subsequently,
we devise a randomized approximation algorithm and an efficient
heuristic to solve the considered problems, respectively. The
simulation results show that the proposed algorithms outperform
two benchmark heuristics in terms of acceptance ratio and
maximum service delay.

Index Terms—Survivability, Task Allocation, Delay, Cloud
Radio Access Network, Mobile Edge Computing.

I. INTRODUCTION

NOWADAYS, the increasing number of connected Inter-
net of Things (IoT) devices such as smart phones has

produced a large quantity of traffic, mostly coming from
bandwidth-starving or time-critical applications of these de-
vices such as Augmented Reality (AR) and online gaming.
According to [1], the mobile data traffic will increase sevenfold
between 2017 and 2022 globally. Based on the current cellular
network and Radio Access Network technology, more Base
Stations (BS) are needed in order to satisfy bandwidth require-
ment of ever-increasing mobile traffic with their respective
applications and services. However, this accordingly incurs

S. Yang, N. He and F. Li are with the School of Computer Science and
Technology, Beijing Institute of Technology, Beijing 100081, China. Email:
{S.Yang, henan, fli}@bit.edu.cn

S. Trajanovski is with Microsoft, W2 6BD London, UK. E-mail: sttra-
jan@microsoft.com

X. Chen is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510006, China. Email: chenxu35@mail.sysu.edu.cn.

Y. Wang is with Department of Computer and Information Sci-
ences, Temple University, Philadelphia, Pennsylvania 19122, USA. Email:
wangyu@temple.edu

X. Fu is with Institute of Computer Science, University of Göttingen, 37077
Göttingen, Germany. Email: Fu@cs.uni-goettingen.de

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

more capital expenditure (CAPEX) and operational expendi-
ture (OPEX) for service providers. In this context, 5G mobile
technology is currently underway to provide ubiquitous, mas-
sive capacity and high availability of services to more end
users.

Cloud Radio Access Network (C-RAN) [2], [3] is a promis-
ing architecture for 5G mobile networks. It divides traditional
Base Stations (BS) into 2 parts, namely (1) Remote Radio
Head (RRH): its function is wireless signal transmission and
reception and it interconnects mobile end users via radio
access links, and (2) Baseband Unit (BBU): its responsibility
is to perform baseband processing and computational func-
tionalities. In this context, the fronthaul links are referred
to connect RRHs and BBUs with high bandwidth and low
latency, and backhaul links are used to connect mobile core
network and BBUs. C-RAN deploys RRHs across all cell
sites to receive tasks from end users for a full coverage,
and places one or several BBU pools in the centralized
locations to improve spectrum utilization efficiency and reduce
CAPEX/OPEX. Therefore, C-RANs will become essential for
5G mobile networks for both cost reduction and performance
improvement. According to [4], the worldwide market for C-
RAN will reach 17.5 Billion dollars by 2023. For instance,
Huawei has released OSN 810 product [5], which can be used
for service transmission on metro C-RAN networks.

Moreover, although the current cloud computing paradigm
[6] can provide a virtually unlimited capability service to end
users, the requested tasks from end users may experience
long-distance and congested transmission to the remote public
cloud and incur higher service delay. Hence, cloud computing
becomes unable to satisfy the ever-increasing stringent delay
task demands [7], which remains a crucial drawback to tackle.
The concept of Mobile Edge Computing (MEC) [8] has been
proposed to bring the computing resources closer to end users
by installing small resource-limited cloud infrastructure called
edge cloud at the network edge. In this context, the end users’
task workloads can be offloaded on edge clouds by achieving
shorter service delay. MEC therefore embraces characteristics
like location awareness, real-time task processing, agile net-
work management and control.

However, in the current C-RAN architecture, it is sug-
gested to use one centralized BBU pool to perform baseband
processing and computational functionalities (process general
tasks). On the one hand, since all the requested tasks which
come from distributed geographically areas will be sent to one
centralized BBU pool for processing, some of the tasks from
remote area may experience longer routing delay and this will

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

2

RRH 1 RRH nRRH 2

BBU Node 1

BBU Pool

BBU Node k

Fronthaul links

Core Network

Backhaul links

Edge CloudBBU Pool Edge Cloud

IoT Gateway

IoT Device

Fig. 1: An integrated system framework of C-RAN and MEC.

affect user’s Quality of Service (QoS), especially for some
delay-stringent task. Moreover, the failure of the centralized
BBU node will trigger service breakdowns of all its associated
tasks, which is not very robust. On the other hand, BBU pool
is mainly used for baseband and some general task processing,
but it cannot deal with different specific tasks. To tackle this
issue, we propose to integrate mobile edge computing into C-
RAN. More specifically, instead of applying one centralized
“big” BBU pool, we could create several distributed “small”
BBU pools for both delay and survivability concerns. Further,
we deploy edge cloud consisting of a certain number of
edge servers on each BBU pool to perform specific task
functionalities. According to ETSI white paper [9], collocating
C-RAN and MEC can make the near term economics of de-
ploying CRAN hubs based on generic processing components
much more attractive, while positioning an Mobile Network
Operator to support (and generate revenue from) some of
the key 5G applications that it would not be able to support
otherwise.

Fig. 1 shows a possible framework by integrating MEC
into C-RAN, where we call the node on which BBU pool
and edge cloud are located and connected together as BBU
node in this paper for brevity. Due to the limited resources
(such as computing capability and battery) of IoT devices,
the end users who use IoT devices have to send/offload their
tasks to BBU node for processing, especially for complex and
computation-intensive tasks. In this sense, each RRH node
receives the task requests from its covering end users and
sends the requests to the BBU node for signal processing and
task processing. However, there are multiple BBU nodes that
can process tasks, and there can be multiple paths from RRH
node to the BBU node which traverse different backhaul links.
Therefore, it is very important to solve the problem of how
to allocate BBU node to process the task for each request

and how to route each task traffic from its accessing RRH
node to the corresponding BBU node such that the maximum
service delay is minimized or guaranteed without affecting
end users’ quality of experience. Moreover, the BBU node or
network link may fail due to man-made reasons or equipment
malfunctioning, and this will produce service disruptions and
degradation. In order to provide a reliable service [10], we
need to first process the requested task on the primary BBU
node and route the traffic via the primary path. Once a failure
happens in the primary BBU node and/or primary path, we
switch to process the task on the backup BBU node and route
the traffic by the backup path which is link-disjoint with the
primary path1. However, there is little existing work focusing
on the aforementioned task allocation and routing problem in
the integrated framework of C-RAN and MEC, not to mention
about considering IoT service delay and survivability. In this
paper, our main contributions are as follows:
• We study the Task Allocation and Survivable Task Allo-

cation in C-RANs problems with MEC. We prove both
problems are NP-hard in general and we identify under
which conditions the Task Allocation in C-RANs problem
is polynomial-time solvable.

• We present a randomized approximation algorithm and
an efficient heuristic to solve the considered problems,
respectively.

• We evaluate the proposed algorithms in terms of accep-
tance ratio, maximum service delay and running time.

As a result, the service provider can adopt our proposed
algorithms to compute the solutions for IoT task requests
in the integrated framework of C-RAN and MEC such that
the maximum service delay is minimized with and without
considering survivability issue.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work. Section III defines the Task
Allocation and the Survivable Task Allocation in C-RANs
problems with MEC and we show both problems are NP-
hard. In Section IV, we propose an exact Integer Linear Pro-
gramming (ILP) formulation to jointly solve the two problems.
In Section V, we present an approximation algorithm and a
heuristic for the considered problems, respectively. Section VI
provides the simulation results and we conclude in Section VII.

II. RELATED WORK

A survey about on throughput enhancement, interference
management, energy efficiency, latency, security and system
cost reduction of C-RAN based cellular networks can be found
in [12].

A. Task/Resource allocation

Li et al. [13] target how to allocate Remote Radio Heads
(RRH), BaseBand Unit (BBU) and Mobile Clones (MC) in
C-RANs with MEC for each user requested task such that the
number of requests which violate their respective deadlines is

1An overview of network survivability can be found in [11], where various
link- or node-disjoint paths algorithms are proposed to find two link-disjoint
paths.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

3

minimized. They subsequently present a multi-stage matching
theory-based heuristic to solve the problem. Different from
[13], we assume there can be more than one BBU node that
can process the users’ requested tasks, and we also consider
(survivable) routing issues. Pang et al. [14] study how to allo-
cate tasks on different Fog-Radio Access Network (F-RAN2)
nodes for multiple user requests such that the longest service
delay among all the user requests is minimized. They present
a polynomial-time dynamic programming-based algorithm for
the special case of only one user request. They then devise an
efficient heuristic for the general case of multiple user requests.
Different from [14] in which the user’s requested task can be
divided into several blocks and conducted in multiple F-RAN
nodes, we assume that the task can only be processed in one
BBU node. Moreover, routing issue is also not considered in
[14].

Wang et al. [16] propose an online approximation algorithm
to jointly schedule network resources in C-RANs (switching
on/off fronthaul links) and computation resources (dispatching
requests to corresponding containers in different servers) in
MEC to maximize profit of a service provider. Yu et al.
[17] present an iterative algorithm to minimize the number
of active BBU and RRH nodes such that each end user is
accommodated by a RRH. Moreover, Yao and Ansari [18]
consider the content placement problem in RRH and BBU
nodes so as to minimize the network traffic costs based on data
popularity. They devise an efficient heuristic for the problem.
Wang et al. [19] formulate the joint energy minimization
and resource allocation problem in C-RAN as a non-convex
optimization by jointly considering the constraints of task
executing time, transmitting power, computation capacity and
fronthaul data rates. Subsequently, they reformulate this non-
convex optimization into an equivalent convex problem based
on weighted minimum mean square error (WMMSE), and
derive an iterative algorithm. Liu et al. [20] study how to
minimize the total energy consumption of C-RAN by jointly
optimizing the cooperative beamforming, remote radio head
(RRH) selection, and virtual baseband units (vBBUs) provi-
sioning. To solve this problem, they first cluster RRHs into
groups by using the hierarchical clustering analysis (HCA)
algorithm and assign a vBBU to each RRH group for the
baseband signal processing. After that, they determine the
RRH selection by optimizing the cooperative beamforming.
Hu et al. [21] present an approximation algorithm to solve the
task allocation problem in C-RAN by randomized rounding
without considering servicing delay and routing issues. Zhang
et al. [22] propose an online framework for task offloading and
radio resource allocation by considering both delay and energy
consumption. Here, the task offloading problem refers to
deciding the proportion of tasks to be executed on devices and
edge servers. Zhang et al. [22] leverage Lyapunov technique to
decompose this problem into four individual subproblems and
apply convex decomposition methods and matching games to
solve each subproblem accordingly. Chen et al. [23] first pro-
pose a deep-learning-based model to predict the traffic patterns

2In F-RAN [15], one master F-RAN node is connected with multiple F-
RAN nodes which receive user requests, and F-RAN node has the capability
of processing tasks as well.

and mobility trends. Subsequently, they propose a heuristic
greedy algorithm to effectively find the robust approximation
to the optimal schemes under resource constraints to solve the
RRH-BBU mapping problem. Nevertheless, service delay and
survivability issues are not considered in above literature.

Moreover, [24], [25] deal with task offloading and schedul-
ing problem for mobile edge computing, and [26], [27] tackle
the microservice scheduling issue for mobile edge computing,
but C-RAN is not considered. There are also some work
dealing with task offloading [28], [29], [30], [31] in C-RAN
with edge computing, which address how to divide tasks and
decide which part of tasks are executed on devices, and which
part of tasks are offloaded to edge servers. However, these
work can only apply to the case when the task is divisible. In
this paper, we deal with the indivisible task. For the divisible
task, it is usually composed of several indivisible subtasks.
In this sense, we could regard “subtask” as the “task” in the
problem input and accordingly extend our work to solve the
divisible tasks allocation problem in C-RAN with MEC.

B. BBU node placement and routing

The above literature assume that the BBU nodes are already
placed in the network. [32], [33], [34], [35], [36], [37] jointly
consider the BBU placement and (survivable) routing problem.
The BBU node placement and routing problem of minimizing
the overall network costs in Wavelength Division Multiplexing
(WDM)-enabled fronthaul link are studied in [32], [33]. An
exact Integer Linear Programming (ILP) is proposed in [32],
[33] to solve this problem. Shehata et al. [34] further study
how to place one primary and one backup BBU node for each
RRH (request) and find respective wavelength path. An ILP is
proposed for this problem. Khorsandi et al. [35] address the
problem of placing primary and backup BBU nodes in order
to cover all the RRHs. Khorsandi et al. [35] jointly consider
the placement of a minimum number of BBU nodes and
solve the routing and wavelength assignment problem for the
fronthaul connections, ensuring that each RRH is connected
to two different BBU nodes. They also devise a heuristic
that tries to maximize the sharing of backup BBU ports
while providing full coverage of all RRHs. Khorsandi and
Raffaelli [36] additionally consider wavelength sharing and
two enhanced placement strategies in their proposed heuristic.
In addition, a facility location-based heuristic is presented in
[37] in order to solve the survivable BBU location problem so
as to minimize the overall costs.

Moreover, Mharsi and Hadji [38] present a Matroid-based
algorithm to solve the assignment problem of RRHs to edge
clouds. Younis et al. [39] consider the resource allocation
problem as two subproblems, namely, (1) bandwidth power
consumption problem and (2) BBU energy-aware resource
allocation problem. To solve them, they respectively present a
divide-and-conquer approach and a best fit decreasing method
for bin-packing problem. However, the service delay is not
considered in above work. Moreover, as we will show in this
paper, even neglecting BBU placement problem, the respective
task allocation and routing problem is NP-hard already and
hence difficult to solve. This is the reason why only exact ILP

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

4

and/or heuristic are proposed for jointly BBU placement and
task allocation/routing problem in these work.

C. Cloud Computing
It is worthwhile to mention that our work is different

from the VM placement problem and task scheduling problem
in cloud computing, although they share some similarities.
More specifically, in the Virtual Machine (VM) placement
problem [40], [41], it is usually assumed that the “link” cost
or delay metric connecting any two nodes in the network is
known/given, i.e., the routing issue is not taken into account
when dealing with VM placement. On the contrary, the ad-
dressed problem in this paper deals with both task allocation
(decide which BBU node to perform task processing) and
routing problem (find path from the accessing RRH node
to the servicing BBU node) for each request such that the
maximum servicing delay is minimized among all the requests.
Furthermore, we also consider the task allocation problem in
CRAN with survivability issue. In this sense, our problem
definition additionally considers routing issue as well as sur-
vivability issue compared to the VM placement problem in
cloud computing. Moreover, in the VM placement problem,
the delay calculation only considers the routing delay between
each VM pair, and the locations of the required VMs are not
known. On the contrary, the servicing delay in our problem
captures both routing delay and task processing delay, and
the user’s accessing RRH node is given to the problem. In
terms of the task scheduling problem in cloud computing,
it is usually assumed that a set of tasks have dynamically
arrived with arrival time, task length/size, deadline, and finish
time, and the problem is how to schedule these task requests
without violating each task’s deadline [42], [43], [44]. While
the addressed problem in this paper is to decide which BBU
node to process task requests (i.e., it is a task allocation
problem but not task scheduling problem) and finding routing
paths from accessing RRH node to the servicing BBU node,
our work is therefore orthogonal to these works.

III. PROBLEM DEFINITION AND COMPLEXITY ANALYSIS

A network G(N ,L) is given, where N is a set of N nodes
and L is a set of L links. Each link l ∈ L has a capacity
of c(l) and a delay value of d(l). Nh ⊆ N indicates a set
of Nh RRH nodes which collect the task requests from end
users. Ne ⊆ N represents a set of Ne BBU nodes where
BBU pool and edge cloud are placed, and each BBU node
n ∈ Ne has a task processing capability of π(n) (i.e., CPU
cycles per second [45]). It is worthwhile to mention that one
network node can be both the BBU node and RRH node, i.e.,
Ne ∩ Nh 6= ∅. Moreover, apart from BBU node and RRH
node, there also exist intermediate nodes (e.g., router nodes)
in N to relay data, and different nodes are interconnected
with links which depends on specific network topology. For
each node pair (u, v) where u, v ∈ N , we assume that the
path set between them is given3 and denoted by Pu,v with a

3According to [46], at most 6 paths in GÉANT network are enough for
serving 11460 traffic matrices during the entire 4 month duration without
violating Quality of Service (QoS). We therefore assume that a (small) set of
paths is sufficient for calculating the optimal solution.

number of K paths. R represents a set of |R| requests, and
for each request r(x, F, δ) ∈ R, x denotes the RRH node
that the request accesses, F indicates required CPU cycles
to complete the task, and δ stands for the transmitting rate.
Without loss of generality, we assume that one end user only
sends one task request in this paper. Moreover, we assume
that each end user can transmit the task to the RRH node
via an unique available channel. We therefore do not take the
wireless transmission delay from users to RRH into account
for brevity in this paper, since this part of value only depends
on the channel bandwidth and task size [47] in this context and
hence cannot be further optimized/minimized. The notations
used in this paper are summarized in Table I.

TABLE I: Notations.

Notation Description
N ,Nh,Ne The set of network nodes, RRH nodes and BBU nodes
L, c(l), d(l) The set of L links, capacity and delay of link l ∈ L
π(n) Maximum processing capacity of BBU node n ∈ Ne
G(N ,L) A network with set of nodes N and links L
Pu,v ,K Path set between u and v, the number of paths
T (pk) Delay of path pk

R

The set of requests. For each r(x, F, δ) ∈ R,
x indicates the RRH node it accesses,
F denotes required CPU cycles to complete the task,
δ represents the data transmitting rate

Hu,v
l,k

A given boolean array indicating whether link l
is traversed by path pk between u and v

D A float variable meaning the maximum service delay

Xr
n, BX

r
n

A boolean variable. It is 1 (true) if r’s requested task
is processed by the primary/backup BBU node n;
and 0 (false) otherwise

Y r,ku,v , BY
r,k
u,v

A boolean variable. It is 1 (true) if k-th primary/backup
path between u and v is used for delivering
the requested task of r; and 0 (false) otherwise.

The total service delay for serving a request r(x, F, δ)
consists of traffic delivering delay and task processing delay.
More specially, if r is processed by BBU node n, then the
service delay ∆r is equal to4

∆r = T (x, n) + Ψn(F) (1)

where T (x, n) denotes the path delay from x to n if n 6= r.x
(otherwise T (x, n) = 0), and Ψn(F) indicates the processing
delay on n for task F . According to [48], [45], Ψn(F) = F

π(n) .
Formally, the Task Allocation in C-RANs problem with

MEC is defined as follows:
Definition 1: Given are a network G(N ,L) and a set of

requests R. The Task Allocation in C-RANs (TACR) problem
with MEC is to allocate each user’s requested task r(x, F, δ) ∈
R to corresponding BBU node and find the path from x to its
servicing BBU node such that the maximum service delay
among all the requests is minimized.
Accordingly, the Survivable Task Allocation in C-RANs prob-
lem with MEC is defined as follows:

Definition 2: Given are a network G(N ,L) and a set of
requests R. The Survivable Task Allocation in C-RANs (S-
TACR) problem with MEC is to simultaneously allocate each
user’s task r(x, F, δ) ∈ R to two corresponding BBU nodes
and find link-disjoint paths from x to its servicing BBU nodes

4In this paper, we assume that the task requests sent from end users’ devices
are to be processed only in BBU nodes (not executed locally on devices).

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

5

such that the maximum service delay among all the requests
is minimized.

Theorem 1: The TACR problem is NP-hard when |R| ≥ 2.
Proof 1: Let us first introduce the Min-Max routing problem

[49]: Given is a network and each link is associated with a
delay value, the Min-Max routing problem is to find a pair
of link-disjoint paths from a source to a destination, such that
the longer path delay is minimized.
In the TACR problem, suppose there is only one RRH node nh
and BBU node ne such that nh 6= ne. Moreover, we assume
|R| = 2 and each link in the network can only be used once
for transporting either r1 or r2 because of the link capacity
limit. Under this assumption, the TACR problem is equivalent
to the Min-Max routing problem. Since the Min-Max routing
problem is proved to be NP-hard according to [49], the TACR
problem is NP-hard. The proof is therefore complete.

Remark 2: The TACR problem for |R| = 1 is polynomial-
time solvable.

Proof 2: When |R| = 1, it indicates there is only one request
(say r(x, F, δ)). To solve the TACR problem, we apply the
shortest path algorithm from r.x to each node in Ne and store
the result in Γ. Finally, we choose a feasible solution with the
minimum service delay in Γ as the optimal solution.

Remark 3: The TACR problem for Ne = 1 is polynomial-
time solvable when the link capacity is not considered.

Proof 3: When the link capacity is not considered, ∀r ∈ R
we can run shortest path from r.x to n ∈ Ne and we can get
the optimal solution (if there exists).

Theorem 4: The S-TACR problem is NP-hard, even when
|R| = 1.

Proof 4: Suppose we do not consider link capacity and BBU
node processing constraint, we first add a dummy node gm
and connect gm with each node n ∈ Ne with link delay of
Ψn(F). Now, the S-TACR problem for |R| = 1 turns into
the aforementioned NP-hard Min-Max routing problem [49],
which is to find a pair of link-disjoint paths from r.x to gm,
such that the longer path delay is minimized. The proof is
therefore complete.

IV. EXACT INTEGER LINEAR PROGRAMMING

In this section, we present an exact Integer Linear Program-
ming (ILP) model to jointly solve the TACR and the S-TACR
problem. We first solve the S-TACR problem and start with
some necessary notations and variables of the ILP.

ILP notations:
(u, v): Node pairs u, v ∈ N such that u 6= v.
Hu,v
l,k : A given boolean array. It is 1 (true) if link l is

traversed by the path pk between u and v, and 0 (false)
otherwise.
T (pk): Delay of path pk.
ILP variables:
D: A float variable indicating the maximum service delay

value among all the requests.
Xr
n: A boolean variable. It is 1 (true) if the requested task

of r is accommodated by primary BBU node n, and 0 (false)
otherwise.

BXr
n: A boolean variable. It is 1 (true) if the requested task

of r is accommodated by backup BBU node n, and 0 (false)
otherwise.
Y r,ku,v : A boolean variable. It is 1 (true) if k-th primary path

between u and v is used for delivering the requested task of
r, and 0 (false) otherwise.
BY r,ku,v : A boolean variable. It is 1 (true) if k-th backup path

between u and v is used for delivering the requested task of
r, and 0 (false) otherwise5.

Objective:

min D (2)

Delay Constraints:

∑
n∈Ne

∑
pk∈P r.x,n

Y r,kr.x,n · (T (pk) +
r.F

π(n)
) ≤ D ∀r ∈ R (3)

∑
n∈Ne

∑
pk∈P r.x,n

BY r,kr.x,n · (T (pk) +
r.F

π(n)
) ≤ D ∀r ∈ R (4)

Placement Constraints:

∑
n∈Ne

Xr
n = 1 ∀r ∈ R (5)

∑
n∈Ne

BXr
n = 1 ∀r ∈ R (6)

∑
u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

Y r,ku,v = 1 ∀r ∈ R (7)

∑
u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

BY r,ku,v = 1 ∀r ∈ R (8)

Path Selection Constraints:

Xr
n =

∑
pk∈P r.x,n

Y r,kr.x,n ∀r ∈ R,n ∈ Ne (9)

BXr
n =

∑
pk∈P r.x,n

BY r,kr.x,n ∀r ∈ R,n ∈ Ne (10)

Link Capacity Constraint:∑
r∈R

∑
u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

r.δ · (Y r,ku,v +BY r,ku,v) ·Hu,v
l,k ≤ c(l)

∀l ∈ L (11)

BBU node processing capability Constraint:∑
r∈R

(Xr
n +BXr

n) · r.F ≤ π(n) ∀n ∈ Ne (12)

Node-disjoint Constraint:

5For simplicity but without loss of generality, u always refers to the RRH
node, and v always indicates the BBU node for Y r,ku,v and BY r,ku,v .

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

6

Xr
n +BXr

n ≤ 1 ∀n ∈ Ne, r ∈ R (13)

Link-disjoint Constraint:

max
u∈Nh,v∈Ne,pk∈Pu,v

(Y r,ku,v ·H
u,v
l,k +BY r,ku,v ·H

u,v
l,k) ≤ 1

∀l ∈ L, r ∈ R (14)

Eq. (2) together with Eqs. (3) and (4) minimizes the
maximum service delay value among all the requests. More
specifically, for a certain request r in the primary task allo-
cation of Eq. (3) (backup task allocation of Eq. (4) follows
similarly),

∑
n∈Ne

∑
pk∈P r.x,n Y

r,k
r.x,n · T (pk) calculates the

path delay, and
∑
n∈Ne

∑
pk∈P r.x,n Y

r,k
r.x,n · r.Fπ(n) calculates the

task processing delay. Therefore, by imposing each request’s
service delay to be less than D for both primary and backup
task allocation and minimizing D in the objective function,
it is equivalently to ensure that the maximum service delay
among all the requests is to be minimized. Eq. (5) (Eq. (6))
ensures that for each user’s request, there must be one and
only one primary (backup) BBU node to process its requested
task. Eq. (7) (Eq. (8)) ensures that for each request, at most
one primary (backup) path is used to transfer the task from its
located RRH node to its hosted BBU node. The above place-
ment constraints are set for variables Xr

n and Y r,ku,v . Eq. (9)
(Eq. (10) follows similarly for BXr

n and BY r,ku,v) establishes
the equality relation between Xr

n and Y r,ku,v . More specifically,
Eq. (9) indicates that when request r is accommodated on n
(if n 6= r.x), then only one path between r.x and n can be
selected to use. Eq. (11) ensures that each link’s capacity is
not violated. Eq. (12) ensures that each BBU node’s maximum
processing capability is not exceeded. Eq. (13) ensures that
the primary BBU node and backup BBU node for serving
the same request cannot be the same node. Eq. (14) ensures
that the primary path and backup path for delivering the same
request traffic should be link-disjoint.

To solve the TACR problem exactly, we only need to keep
the variables Xr

n and Y r,ku,v in the above ILP and remove
unnecessary variables and constraints containing BXr

n and
BY r,ku,v . The exact ILP for the TACR problem is shown in
Eq. (15).

min D

s.t.



∑
n∈Ne

∑
pk∈P r.x,n

Y r,kr.x,n · (T (pk) + r.F
π(n)) ≤ D

∀r ∈ R∑
n∈Ne

Xr
n = 1 ∀r ∈ R∑

u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

Y r,ku,v = 1 ∀r ∈ R

Xr
n =

∑
pk∈P r.x,n

Y r,kr.x,n ∀r ∈ R,n ∈ Ne∑
r∈R

∑
u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

r.δ · Y r,ku,v ·H
u,v
l,k ≤ c(l)

∀l ∈ L∑
r∈R

Xr
n · r.F ≤ π(n) ∀n ∈ Ne

(15)

V. APPROXIMATION ALGORITHM AND HEURISTIC

Consider that the execution time of ILP solutions might in-
crease with the complexity of the requests and the dimensions
of C-RAN, in this section we first propose an approximation
algorithm to solve the TACR problem. We subsequently devise
an efficient heuristic to solve the S-TACR problem on the
basis of the proposed approximation algorithm for the TACR
problem.

A. Approximation algorithm for the TACR problem

The logic of the approximation algorithm is first to trans-
form the original ILP to a Linear Programming (LP). By
solving the LP, we subsequently achieve a solution via the
randomized rounding method with a proved bounded approxi-
mation ratio. More specifically, we first obtain the relaxed LP
for the TACR problem in Eq. (15) by setting Xr

n and Y r,ku,v

to be fractional variables ranging in [0, 1], which provides a
lower bound for the TACR problem. Subsequently, we present
a Randomized Rounding Task Allocation (RRTA) algorithm
in Algorithm 1 to solve the TACR problem. The rationale of
RRTA in Algorithm 1 is that after solving linearized version
in Eq. (15), we first get fractional solutions Ỹ r,ku,v (and X̃r

n).

Our aim is to derive an integer solution from Ỹ r,ku,v > 0 by
randomized rounding. To that end, RRTA first uses Ht[R] to
store which BBU node to issue the requested task from r ∈ R,
and uses Rt[R][N][N] to store which path to route traffic of
r ∈ R from u ∈ N to v ∈ N . After that, for each request
r, RRTA finds the appropriate BBU node for processing its
task request and the path to route the traffic from r.x to its
processing BBU node (if necessary). RRTA uses P to store the

results where Ỹ r,kr.x,n > 0 in steps 6-7. If P is not empty, RRTA

first tries to use r.x to issue r if ∃Ỹ r,kr.x,n such that r.x == n.

If this step fails, RRTA randomly selects Ỹ r,kr.x,n > 0 from P
and uses corresponding n to issue r. Accordingly, in step 14
Ht[r] ← n means to record the BBU node for processing r
and Rt[r][r.x][n] ← k indicates to record path information.
After that, in step 15 RRTA reduces the link capacity and
node’s processing capability accordingly. The above procedure
continues until all the requests have been iterated.

The time complexity of RRTA can be analyzed like this:
The time complexity of RRTA is dominated by the LP in
Eq. (15). There exists an efficient polynomial-time algorithm
to solve the LP with the current best worst-case complexity
of O([I

3

ln I]γ) by an interior-point method according to [50],
where I is the number of variables and γ is the bit size
of the problem (related to the number of bits in its binary
representation). There are in total O(|R|KN2 + |R|N + 1) =
O(|R|KN2) variables in Eq. (15), leading to a total time
complexity of O(γ|R|

3K3N6

ln(|R|KN2)) for RRTA.

B. Approximation Performance Analysis

The analysis leverages on the method of Upper Tail Cher-
noff bound [51] and Union Bound (Boole’s inequality) [52,
Chapter 4.7] — a technique often used in other works (see
e.g., [53], [54], [55], [56]). For completeness, we first give a

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

7

Algorithm 1: RRTA (G(N ,L), R)

1 Solve the LP in Eq. (15) where Xr
n and Y r,ku,v are set to

be fractional variables to obtain Ỹ r,ku,v and X̃r
n

2 Ht[R]← null, Rt[R][N][N]← 0
3 foreach request r ∈ R do
4 P ← ∅
5 foreach n ∈ Ne do

6 if Ỹ r,kr.x,n > 0 then

7 P.Add(Ỹ r,kr.x,n);

8 if P 6= ∅ then

9 if ∃Ỹ r,kr.x,n such that r.x == n then
10 Ht[r]← r.x
11 Reduce the node’s processing capability
12 else

13 Randomly select Ỹ r,kr.x,n > 0 from P
14 Ht[r]← n, Rt[r][r.x][n]← k
15 Reduce the link capacity and node’s

processing capability

formal definition of the Upper Tail Chernoff bound and Union
Bound inequality:

Theorem 5: [51] Let x1, x2, . . . , xn be n independent
random variables, and xi ∈ [0, 1] for 1 ≤ i ≤ n. Denote
µ = E

[∑n
i=1 xi

]
, then for an arbitrary positive ε we have:

Pr

[
n∑
i=1

xi ≥ (1 + ε)µ

]
≤ e

−ε2µ
2+ε (16)

Theorem 6: Let A1, A2, . . . , An be n events with happening
probability Pr[A1], Pr[A2], . . . , Pr[An], then Pr[A1 ∪ A2 ∪
. . . ∪An] ≤

∑n
i=1 Pr[Ai].

Moreover, α is used to ensure that the following defined
expected values are fractional number and defined as follows:

α = min
{
min{min(c(l))

r.δ
},min{ Dmin

T (pk) +
r.F
π(n)

},min{π(n)
r.F
}
}

∀r ∈ R, l ∈ L, n ∈ Ne, pk ∈ Pu,v : u ∈ Nh, v ∈ Ne (17)

where Dmin denotes the maximum service delay in the optimal
solution. The proposed RRTA rounds the fractional Ỹ r,ku,v

solved from linearized version of Eq. (15) to integer value
and then derive the task allocation and routing solution6. In
the following, we will analyze the violating factor in terms
of link capacity, maximum service delay and node processing
capability of RRTA.

1) Link capacity violating factor:
Definition 3: For each request r and each link l, the traffic

load zrl is defined as follows:

zrl =

 r.δ with prob.
∑

u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

Ỹ r,ku,v ·Hu,v
l,k

0 otherwise
6According to Eq. (15), Xr

n =
∑

pk∈Pn,r.x
Y r,kr.x,n, so the task allocation

solution achieved by RRTA can also be regarded as rounded from Xr
n.

Since zr1l , zr2l , . . . are mutually independent according to
their definition, the expected load on link l is:

E

[∑
r∈R

zrl

]
=
∑
r∈R

E[zrl] (18)

=
∑
r∈R

r.δ
∑
u∈Nh

∑
v∈Ne

∑
pk∈Pu,v

Ỹ r,i,ju,v,k ·H
u,v
l,k ≤ c(l)

According to the definition of α in Eq. (17), it holds that
0 ≤ zrl ·α

c(l) ≤ 1. Therefore, by dividing Eq. (18) with c(l)
α on

both sides we have:

µc = E

[∑
r∈R

zrl · α
c(l)

]
≤ α (19)

Since α
µc
≥ 1, we have:

Pr

[∑
r∈R

zrl · α
c(l)

≥ (1 + ε)α

]
≤ Pr

[∑
r∈R

α

µc

zrl · α
c(l)

≥ (1 + ε)α

]
(20)

We cannot directly apply Theorem 5 for zrl ·α
c(l) with α, however

the following holds:

α =
α

µc
µc =

α

µc
E

[∑
r∈R

zrl · α
c(l)

]
= E

[∑
r∈R

α

µc

zrl · α
c(l)

]
(21)

By applying Theorem 5 for α
µc

zrl ·α
c(l) , based on Eq. (21):

Pr

[∑
r∈R

α

µc

zrl · α
c(l)

≥ (1 + ε)α

]
≤ e

−ε2α
2+ε (22)

where ε is an arbitrary positive value. Further, using inequal-
ities from Eqs. (20) and (22) together and introducing ∆, we
have:

Pr

[∑
r∈R

zrl
c(l)
≥ (1 + ε)

]
≤ e

−ε2α
2+ε ≤ ∆

N2
(23)

where ∆ is a network related variables and ∆→ 0 when the
network size grows. By solving Eq. (23), we have that

ε ≥
− log ∆

N +
√

log2 ∆
N2 − 8α log ∆

N2

2α
(24)

Theorem 7: RRTA can achieve a link capacity violating
factor of 4 logN

α + 3.
Proof: By setting ∆ = 1

N2 , Eq. (23) becomes:

Pr

[∑
r∈R

zrl
c(l)
≥ (1 + ε)

]
≤ 1

N4
, where ε ≥ 4 logN

α
+ 2.

(25)

By using Union Bound inequality for all the links:

Pr

[⋃
l∈L

∑
r∈R

zrl
c(l)
≥ (1 + ε)

]
≤
∑
l∈L

Pr

[
zrl
c(l)
≥ (1 + ε)

]
≤ N2 · 1

N4
=

1

N2
, where ε ≥ 4 logN

α
+ 2 (26)

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

8

The last inequality holds since there are at most N2 links in
a network with N nodes. Finally, Eq. (26) indicates that the
probability the expected load on any link violates c(l) with a
factor of 1 + ε = 4 logN

α + 3 approaches 0 when N → +∞.

2) Maximum service delay violating factor:
Theorem 8: RRTA can achieve a delay violating factor of

log |R|+2 logN
α + 3.

Proof 5: Similar to the proof of theorem 7, we have the
following definition:

Definition 4: For each request r ∈ R, and each n ∈ Ne:

wrr.x,n =

 T (pk) + r.F
π(n) with probability

∑
pk∈P r.x,n

Ỹ r,kr.x,n

0 otherwise

Since wrr.x,n1
, wrr.x,n2

, . . . are mutually independent according
to their definition, the expected delay for r follows:

E

[∑
n∈Ne

wrr.x,n

]
=

∑
n∈Ne

E[wrr.x,n]

=
∑
n∈Ne

 ∑
pk∈Pr.x,n

Ỹ r,kr.x,n · (T (pk) +
r.F

π(n)
)

 ≤ D (27)

According to the definition of α in Eq. (17) it holds that 0 ≤
wrr.x,n·α

D ≤ 1. By dividing Eq. (27) with D
α on both sides we

have:

µD = E

[∑
n∈Ne

wrr.x,n · α
D

]
≤ α (28)

In a similar way as proved from Eqs. (19) to (23), using α
µD
≥

1 (Eq. (28)) and applying Theorem 5 for α
µD

wrr.x,n·α
D whose

expectation of their sum over u, v ∈ N is α, we arrive at:

Pr

[∑
n∈Ne

wrr.x,n · α
D

≥ (1 + θ)α

]
≤

Pr

[∑
n∈Ne

α

µD

wrr.x,n · α
D

≥ (1 + θ)α

]
≤ e

−θ2α
2+θ (29)

By letting e
−θ2α
2+θ be less than ∆

|R| , we have:

Pr

[∑
n∈Ne

wrr.x,n
D

≥ (1 + θ)

]
≤ e

−θ2α
2+θ ≤ ∆

|R|
(30)

Eq. (30) is satisfied for:

θ ≥
− log ∆

|R| +
√

log2 ∆
|R| − 8α log ∆

|R|

2α
(31)

By setting ∆ = 1
N2 , Eq. (30) becomes:

Pr

[∑
n∈Ne

wrr.x,n
D

≥ (1 + θ)

]
≤ 1

|R|N2
(32)

Using Union Bound inequality for all the requests, we arrive
at:

Pr

[⋃
r∈R

∑
n∈Ne

wrr.x,n
D

≥ (1 + θ)

]

≤
∑
r∈R

Pr

[∑
n∈Ne

wrr.x,n
D

≥ (1 + θ)

]

≤ |R| · 1

|R|N2
=

1

N2
, where θ ≥ log |R|+ 2 logN

α
+ 2

(33)

Eq. (33) indicates that for any request, the probability the
expected delay violates the optimal maximum service delay
with a factor of 1 + θ = log |R|+2 logN

α + 3 approaches 0 when
N → +∞.

3) BBU node processing capability violating factor:
Theorem 9: The randomized approximation algorithm can

achieve a node processing capability violating factor of
3 logN
α + 3.
Proof 6:
Definition 5: For each request r and each BBU node n, the

traffic load βrn is defined as follows:

βrn =

{
f with prob. X̃r

n ∀n ∈ Ne, r ∈ R
0 otherwise

Since βr1n , βr2n , . . . are mutually independent according to
their definition, the expected load on node n is:

E

[∑
r∈R

βrn

]
=
∑
r∈R

E[βrn] =
∑
r∈R

X̃r
n · f ≤ π(n)

∀n ∈ Ne (34)

According to the definition of α in Eq. (17) and Eq. (34), it
holds that 0 ≤ βrn·α

π(n) ≤ 1. By dividing Eq. (34) with π(n)
α on

both sides we have:

µπ = E

[∑
r∈R

βrn · α
π(n)

]
≤ α (35)

In a similar way as proved from Eqs. (19) to (23), using
α
µπ
≥ 1 (Eq. (35)) and applying Theorem 5 for α

µπ

βrn·α
π(n) whose

expectation of their sum over r ∈ R is α, we arrive at:

Pr

[∑
r∈R

βrn · α
π(n)

≥ (1 + ρ)α

]
≤ (36)

Pr

[∑
r∈R

α

µπ

βrn · α
π(n)

≥ (1 + ρ)α

]
≤ e

−ρ2α
2+ρ

where ρ is an arbitrary positive value. Further, by letting e
−ρ2α
2+ρ

be less than ∆
N , we arrive at:

Pr

[∑
r∈R

βrn
π(n)

≥ (1 + ρ)

]
≤ e

−ρ2α
2+ρ ≤ ∆

N
(37)

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

9

By solving Eq. (37), we have that

ρ ≥
− log ∆

N +
√

log2 ∆
N2 − 8α log ∆

N2

2α
(38)

By setting ∆ = 1
N2 , Eq. (37) becomes

Pr
[∑

r∈R
βrn·α
π(n) ≥ (1 + ρ)α

]
≤ 1

N3

As a result, for all the BBU nodes, we have:

Pr

[⋃
n∈Ne

∑
r∈R

βrn
π(n)

≥ (1 + ρ)

]

≤
∑
n∈Ne

Pr

[∑
r∈R

βrn
π(n)

≥ (1 + ρ)

]

≤ Ne ·
1

N3
≤ 1

N2
, where ρ ≥ 3 logN

α
+ 2 (39)

Therefore, Eq. (39) implies that for any BBU node in
the network, the probability that its maximum processing
capability is violated by a factor of 1 + ρ = 3 logN

α + 3 will
approach 0 when N grows +∞.

Theorem 10: The randomized approximation algorithm can
achieve a link capacity violating factor of 4 logN

α +3, maximum
service delay violating factor of log |R|+2 logN

α + 3, and node
processing capability violating factor of 3 logN

α + 3.
Proof: The proof follows from Theorems 7, 8 and 9.

Remark: Although theoretically RRTA has performance
violating factors as analyzed in Theorem 10, we found that
during extensive simulations in Section VI RRTA can achieve
close-to-optimal performance, which indicates that it can
hardly violate the threshold values. Furthermore, we could also
accordingly adjust the “available” values of link capacity and
node processing capability in advance, and then run RRVA.
By doing this, we can guarantee there is no violation of the
considered network metrics.

C. Heuristic for the S-TACR problem

In this subsection, we propose a heuristic called Survivable
Sequential Task Allocation (SSTA) algorithm to solve the
S-TACR problem. As shown in Algorithm 2, SSTA first
calls RRTA to find the primary solution for all the requests.
Subsequently, for each request r that has a feasible primary
solution in Step 1, SSTA first removes the links and BBU
node used by the primary solution in G. After that, SSTA
runs the shortest path from r.x to each remaining BBU node.
SSTA then selects a BBU node as the backup solution with
the minimum service delay. The link bandwidth and node
capacity are accordingly reduced. Because the incurred RRTA
is an approximation algorithm, it happens that some of the
requests violate the requirements such as link capacity. For
those requests (denoted by R′), Steps 8-11 apply Suurballe’s
algorithm [57] to find both primary and backup solution
for each r ∈ R′. More specifically, in Step 9 SSTA first
creates a dummy node and connects it with each BBU node.
Subsequently, by applying Suurballe’s algorithm from r′.x to
gm, we can get the solution of two BBU nodes to process
r′.x and a pair of link-disjoint paths from r′.x to two of BBU
nodes. Finally, SSTA accordingly reduces the consumed link

bandwidth and feasible processing capability in Step 11. Since
SSTA calls for RRTA, the time complexity of SSTA is still
dominated by the LP in Eq. (15). As a result, we can deduce
that the time complexity of SSTA is O(γ|R|

3K3N6

ln(|R|KN2)), which is
the same with RRTA.

Algorithm 2: SSTA (G(N ,L), R)

1 Call RRTA(G, R) in Algorithm 1 to achieve the
primary solution.

2 Reduce the link capacity and node processing
capability in G consumed by the primary solution.

3 foreach r that has a feasible primary solution in Step
1 do

4 G′ ← G
5 Prune the links and BBU node in G′ used by the

primary solution of r obtained in step 1.
6 Run shortest path from r.x to each remaining BBU

node and select one BBU node with the least
total delay as the backup solution.

7 Reduce the link capacity and node processing
capability in G consumed by the backup solution.

8 foreach r′ that violates the link or node capacity in
Step 1 do

9 Create a dummy node gm to connect it with each
BBU node with link weight as the processing
delay.

10 Apply Suurballe’s algorithm [57] from r′.x to gm
to find link-disjoint paths.

11 Reduce the link capacity and node processing
capability in G consumed by the solution.

Remark: In this paper, the goal of the TACR problem
and S-TACR problem is to minimize the maximum service
delay. However, it is worthwhile to mention that our proposed
algorithms can also be adjusted to solve the problems for the
requests with different delay requirements. For example, we
can rewrite Eqs. (3) and (4) to ensure that each request’s
delay requirement is satisfied, and the approximation ratio
proof goes similarly with Theorem 8. Moreover, our proposed
algorithms (RRTA and SSTA) assume that a set of requests
R is known/given and they calculate the solutions for these
requests. This can be understood as an offline scenario. More
than that, RRTA and SSTA can also deal with the requests
which arrive in an online fashion. In the online scenario, the
requests are assumed to arrive one by one dynamically, and
RRTA and/or SSTA can take each arriving request as the input
and return the task allocation and routing solution. That is
to say, our tackled problem in this paper is general and our
proposed algorithms can deal with both the online and offline
scenarios.

VI. SIMULATIONS

A. Simulation Setup

We use the tool GT-ITM [58] to generate two MEC-
enabled CRAN networks with the number of nodes 25 and
40, respectively. More specifically, we let (and round up) that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

10

25% of the nodes are BBU nodes and these BBU nodes have
at least 2 hops (a path with at least two links to connect them)
from each other representing for different coverage regions.
We also set (and round up) 70% of the nodes to be RRH nodes
that can collect task requests from end users (one node can be
both BBU node and RRH node). Moreover, network parame-
ters, computing capabilities and traffic requests are randomly
generated in a uniform distribution which is consistent with the
existing work [13], [36], [59]. In both networks, the maximum
processing capabilities of BBU nodes range from 800 to 1000.
The link capacity is randomly distributed in [0.5, 1] Gb/s and
link delay takes values in [10, 50] ms. We first randomly
generate |R| = 100, 200, 300, 400, 500 requests for the TACR
problem, and these requests are uniformly distributed in all the
RRH nodes. For each request r(x, F, δ) ∈ R, F is between 5
and 20 and δ is between 20 Mb/s and 50 Mb/s.

To solve the TACR problem, we compare the exact ILP
in Eq. (15) and our proposed approximation algorithm RRTA
with cooperative task computing one-for-all (CTC-All) which
is derived from [14] and Random algorithm as follows:

1) CTC-All: We first create a dummy node g and connect
it with each node n ∈ Ne with link weight d(gn)

λ(gn) · τ ,
where d(gn) denotes the delay of link (g, n), λ(gn)
indicates the residual available processing capability, and
τ represents a penalty factor or coefficient. For the others
links l ∈ L in the network, its weight is assigned
as d(l)

η(l) , where η(l) stands for the free link capacity.
By assigning the above link weights, CTC-All tries to
reduce maximum service delay through distributing the
requests throughout the network by avoiding bottleneck.
Subsequently, for each request r(x, F, δ), CTC-All finds
the shortest path from x to g without violating the
link capacity and BBU node processing capability. This
procedure continues until all the requests in R have been
iterated.

2) Random Algorithm: For each request r(x, F, δ), Ran-
dom algorithm keeps randomly selecting one BBU node
n ∈ Ne until n has sufficient residual processing
capability (in at most W rounds). If this step succeeds,
Random algorithm randomly selects one path from x to
n. This procedure continues until all the requests in R
have been iterated.

To solve the S-TACR problem, the routine of CTC-All and
Random algorithm is like this: First run CTC-All or Random
algorithm in the network to obtain the primary solution. Prune
all the links and BBU node used by the primary solution and
applies CTC-All or Random algorithm again to achieve the
backup solution.

The number of paths K between each node pair is set to
be 10 for all the algorithms. We let τ = 1 for CTC-All and
W = 20 for Random algorithm. The simulations are run on
a high-performance desktop PC with 3.4 GHz and 16 GB
memory. We use IBM ILOG CPLEX 12.8 to implement ILP,
IBM ILOG CPLEX 12.8 (CPLEX Callable Library interface)
together with C# to implement RRTA, and C# to implement
all the heuristics.

B. Simulation Results for the TACR problem

100 200 300 400 500
Number of requests

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

R
at

io
 (A

R
) ILP

RRTA
CTC-All
Random

(a) 25-node network

100 200 300 400 500
Number of requests

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

R
at

io
 (A

R
) ILP

RRTA
CTC-All
Random

(b) 40-node network

Fig. 2: Acceptance Ratio for the TACR problem.

100 200 300 400 500
Number of requests

100

150

200

250

300

M
ax

im
um

 S
er

vi
ce

 D
el

ay

ILP
RRTA
CTC-All
Random

(a) 25-node network

100 200 300 400 500
Number of requests

150

200

250

300

350

400

M
ax

im
um

 S
er

vi
ce

 D
el

ay

ILP
RRTA
CTC-All
Random

(b) 40-node network

Fig. 3: Maximum Service Delay for the TACR problem.

100 200 300 400 500
Number of requests

100

102

104

106

R
un

ni
ng

 T
im

e
(m

s)

ILP
RRTA
CTC-All
Random

(a) 25-node network

100 200 300 400 500
Number of requests

100

102

104

106

108

R
un

ni
ng

 T
im

e
(m

s)

ILP
RRTA
CTC-All
Random

(b) 40-node network

Fig. 4: Running Time for the TACR problem.

We first compare the algorithms in terms of Accep-
tance Ratio (AR), which is defined as the number of ac-
cepted/accommodated requests divided by the total number of
requests. From Fig. 2 we can see that ILP can always accept
all the requests and our approximation algorithm can accept
almost all the requests. CTC-All algorithm also performs well
in accepting more requests, which may benefit from its link
weight allocation to evenly distribute task requests across the
network, but at the expense of higher maximum service delay
as we will show later in Fig. 3. The Random algorithm has
the worst performance because of its randomness, and it can
only accept around 20% of the total requests when |R| = 500.

Next, we evaluate the maximum service delay of all the
algorithms in Fig. 3. We find that ILP can always have the
lowest maximum service delay value, and the approximation
algorithm achieves a very close performance with the ILP.
Random algorithm performs poorly by having the highest
maximum service delay value. Except for the Random algo-
rithm, the maximum service delay value increases with |R|
increasing. The reason is that with more requests to serve, the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

11

available capacities of critical links are decreased rapidly, so
longer delay path has to be used to route the request.

Finally, Fig. 4 presents the total running time of all the
algorithms (in log scale). We observe that the CTC-All has the
lowest running time, and Random algorithm consumes a bit
higher running time than the CTC-All because of its iteration
rounds W . The running time of RRTA is less than the value of
ILP, but it is higher than the values of benchmark heuristics.
Nevertheless, it is still acceptable since RRTA achieves better
performance in terms of AR (Fig. 2) and maximum service de-
lay (Fig. 3). In practice, in many cases the traffic requests can
be known or predicted [60] in advance, therefore the service
provider can apply the proposed approximation algorithm to
calculate the solutions in an offline fashion (in acceptably short
time as implied in Fig. 4) for the incoming traffic requests.
Another observation is that when |R| = 1, we found our
proposed approximation algorithm can return the solution in
less than 1 second (We omit the figure for brevity). In practice,
in many cases the traffic requests can be known or predicted
[60] in advance, therefore the service provider can apply the
proposed approximation/heuristic algorithm to calculate the
solutions in an offline fashion (in acceptably short time as
implied in Fig. 4) for the (delay-sensitive) incoming traffic
requests. In addition, our proposed approximation algorithm
can also be applied only periodically or as a complementary
solution for existing methods.

C. Simulation Results for the S-TACR problem

100 200 300 400 500
Number of requests

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

R
at

io
 (A

R
) SSTA

CTC-All
Random

(a) 25-node network

100 200 300 400 500
Number of requests

0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

R
at

io
 (A

R
)

SSTA
CTC-All
Random

(b) 40-node network

Fig. 5: Acceptance Ratio for the S-TACR problem (95 percent
confidence interval).

100 200 300 400 500
Number of requests

100

150

200

250

300

M
ax

im
um

 S
er

vi
ce

 D
el

ay

SSTA
CTC-All
Random

(a) 25-node network

100 200 300 400 500
Number of requests

150

200

250

300

350

400

M
ax

im
um

 S
er

vi
ce

 D
el

ay

SSTA
CTC-All
Random

(b) 40-node network

Fig. 6: Maximum Service Delay for the S-TACR problem (95
percent confidence interval).

In this subsection, we show the performance of the algo-
rithms to solve the S-TACR problem. In particular, we found
that the ILP in Eqs. (2)-(14) for the S-TACR problem cannot

100 200 300 400 500
Number of requests

100

102

104

106

R
un

ni
ng

 T
im

e
(m

s)

SSTA
CTC-All
Random

(a) 25-node network

100 200 300 400 500
Number of requests

102

104

106

R
un

ni
ng

 T
im

e
(m

s) SSTA
CTC-All
Random

(b) 40-node network

Fig. 7: Running Time for the S-TACR problem (95 percent
confidence interval).

return a feasible solution even if it is running for more than one
day. Besides, even though we set the variables to be fractional
variables in the ILP of Eqs. (2)-(14), we still cannot get the
feasible lower bound solution for more than one day’s running.
This indicates that with more variables and constraints in Eqs.
(2)-(14), we cannot achieve a feasible exact solution or even
lower bound in a reasonable time, and heuristics with faster
running time are therefore needed. Due to the lack of the
exact solution, we randomly generate 50 sets of different traffic
requests and show the simulation results of the heuristics with
the confidence interval of 95%.

Fig. 5 shows the AR value returned by all the heuristics.
Similar to Fig. 2, SSTA achieves the highest AR, followed by
CTC-All, and Random algorithm has the worst performance.
Fig. 6 depicts the maximum service delay returned by all the
heuristics. We see that SSTA always obtains lowest maximum
service delay value among all the heuristics, and Random algo-
rithm behaves worst. Moreover, although CTC-All has better
performance in AR by leveraging its link weight allocation as
shown in Fig. 5, it also leads to a higher maximum service
delay as shown in Fig. 6. Finally, Fig. 7 shows the total
running time of all the heuristics. Similar to Fig. 4, CTC-
All and Random algorithm have much quicker running time
than SSTA.

D. Impacts of node processing capacity and link capacity

In this subsection, we investigate the impact of processing
capacity π(n) and link capacity c(l) on the maximum service
delay. To that end, we respectively increase the value of
π(n) to 2π(n) and 3π(n) for each node n ∈ Ne, and
increase the value of c(l) to 2c(l) and 3c(l) for each link
l ∈ L. Accordingly, the network throughput has also been
increased with the increase of link capacity. Fig. 8 and Fig. 9
illustrate the maximum service delay value returned by all the
algorithms with different π value for the TACR and S-TACR
problem. We can see that when π increases, the maximum
service values decrease for all the algorithms. The reason
is that according to Eq. (1), the maximum service delay
consists of both routing delay and processing delay. Since
the processing delay is inversely proportional to processing
capacity, an increase of processing capacity leads to a shorter
processing delay and hence a shorter maximum service delay.
With all the other simulation parameters unchanged, Fig. 10
and Fig. 11 depict the maximum service delay value with

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

12

different value of link capacities. We see that with link
capacity increasing, the maximum service delay decreases
accordingly. This can be explained that since routing delay is
one part of the service delay according to Eq. (1), when link
capacity is enlarged, more requests can be routed by shorter
delayed paths without violating the link capacity. Hence, the
overall maximum service delay is decreased by increasing the
link capacity. In all, we conclude that both node processing
capacity and link capacity can affect the maximum service
delay, which also validates Eq. (1).

2 3
0

100

200

300

M
ax

im
um

 S
er

vi
ce

 D
el

ay

ILP
RRTA
CTC-All
Random

(a) 25-node network

2 3
0

100

200

300

400
M

ax
im

um
 S

er
vi

ce
 D

el
ay

ILP
RRTA
CTC-All
Random

(b) 40-node network

Fig. 8: Maximum Service Delay with different value of
processing capacity in the TACR problem.

2 3
0

50

100

150

200

250

300

M
ax

im
um

 S
er

vi
ce

 D
el

ay

SSTA
CTC-All
Random

(a) 25-node network

2 3
0

100

200

300

400

M
ax

im
um

 S
er

vi
ce

 D
el

ay

SSTA
CTC-All
Random

(b) 40-node network

Fig. 9: Maximum Service Delay with different value of
processing capacity in the S-TACR problem.

c 2 c 3 c
0

100

200

300

M
ax

im
um

 S
er

vi
ce

 D
el

ay

ILP
RRTA
CTC-All
Random

(a) 25-node network

c 2 c 3 c
0

100

200

300

400

M
ax

im
um

 S
er

vi
ce

 D
el

ay

ILP
RRTA
CTC-All
Random

(b) 40-node network

Fig. 10: Maximum Service Delay with different value of link
capacity in the TACR problem.

VII. CONCLUSION

In this paper, we study the Task Allocation and Survivable
Task Allocation in C-RANs problems with MEC. We first
analyze the complexities of these two problems, and show they
are NP-hard in general. We subsequently present an exact ILP
formulation to jointly solve these two problems. After that,
we devise a randomized approximation algorithm to solve

c 2 c 3 c
0

50

100

150

200

250

300

M
ax

im
um

 S
er

vi
ce

 D
el

ay

SSTA
CTC-All
Random

(a) 25-node network

c 2 c 3 c
0

100

200

300

400

M
ax

im
um

 S
er

vi
ce

 D
el

ay

SSTA
CTC-All
Random

(b) 40-node network

Fig. 11: Maximum Service Delay with different value of link
capacity in the S-TACR problem.

the Task allocation in C-RANs problem with MEC. Based
on the proposed approximation algorithm, we propose an
efficient heuristic to solve the Survivable Task allocation in C-
RANs problem with MEC. Via extensive simulations, we find
that our proposed algorithms can outperform two benchmark
heuristics in terms of acceptance ratio and maximum service
delay, although this comes at the expense of higher running
time. In our future work, we plan to implement our proposed
algorithms in real testbeds [39] and extend the work to jointly
consider network management and control related metrics.

ACKNOWLEDGMENT

The work of Song Yang is partially supported by the
National Natural Science Foundation of China (NSFC, No.
61802018) and Beijing Institute of Technology Research Fund
Program for Young Scholars. The work of Fan Li is partially
supported by the NSFC (No. 61772077), and the Beijing Nat-
ural Science Foundation (No. 4192051). The work of Xu Chen
is partially supported by the National Key Research and De-
velopment Program of China (No. 2017YFB1001703), NSFC
(No. U1711265) and the Program for Guangdong Introducing
Innovative and Enterpreneurial Teams (No. 2017ZT07X355).
The work of Xiaoming Fu is partially supported by the EU
H2020 RISE COSAFE project (No. 824019). Song Yang is
the corresponding author.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and trends, 2017–2022,”
November 2018, white paper.

[2] K. Chen and R. Duan, “C-RAN: the road towards green RAN,” China
Mobile Research Institute, white paper, vol. 2, 2011.

[3] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, “Cloud radio access network
(C-RAN): a primer,” IEEE Network, vol. 29, no. 1, pp. 35–41, 2015.

[4] “C-RAN deployment: Market opportunity analysis - 2018 and
beyond,” 2018. [Online]. Available: https://www.researchandmarkets.
com/research/w8ds5f/global cran?w=12

[5] “5G-oriented C-RAN bearer solution.” [Online]. Available: https://
carrier.huawei.com/en/solutions/all-cloud-network-towards-5g/cloudran

[6] P. Mell and T. Grance, “The NIST definition of cloud computing,”
Communications of the ACM, vol. 53, no. 6, p. 50, 2010.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” ETSI White paper, 2015.

[9] A. Reznik, L. M. C. Murillo, Y. Fang, W. Featherstone, M. Filippou,
F. Fontes, F. Giust, Q. Huang, A. Li, C. Turyagyenda et al., “Cloud
RAN and MEC: a perfect pairing,” ETSI MEC, no. 23, p. 25, 2018.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

13

[10] C. Colman-Meixner, C. Develder, M. Tornatore, and B. Mukherjee, “A
survey on resiliency techniques in cloud computing infrastructures and
applications,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3,
pp. 2244–2281, 2016.

[11] F. A. Kuipers, “An overview of algorithms for network survivability,”
ISRN Communications and Networking, vol. 2012, no. 932456, 2012.

[12] M. F. Hossain, A. U. Mahin, T. Debnath, F. B. Mosharrof, and K. Z.
Islam, “Recent research in cloud radio access network (c-ran) for
5g cellular systems - a survey,” Journal of Network and Computer
Applications, vol. 139, pp. 31 – 48, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804519301432

[13] T. Li, C. S. Magurawalage, K. Wang, K. Xu, K. Yang, and H. Wang, “On
efficient offloading control in cloud radio access network with mobile
edge computing,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), June 2017, pp. 2258–2263.

[14] A. Pang, W. Chung, T. Chiu, and J. Zhang, “Latency-driven cooperative
task computing in multi-user fog-radio access networks,” in IEEE
International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 615–624.

[15] Y. Shih, W. Chung, A. Pang, T. Chiu, and H. Wei, “Enabling low-latency
applications in fog-radio access networks,” IEEE Network, vol. 31, no. 1,
pp. 52–58, 2017.

[16] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, and S. Ou, “Dynamic
resource scheduling in mobile edge cloud with cloud radio access
network,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 11, pp. 2429–2445, 2018.

[17] N. Yu, Z. Song, H. Du, H. Huang, and X. Jia, “Multi-resource allocation
in cloud radio access networks,” in IEEE International Conference on
Communications (ICC), 2017, pp. 1–6.

[18] J. Yao and N. Ansari, “Joint content placement and storage allocation
in C-RANs for IoT sensing service,” IEEE Internet of Things Journal,
2018.

[19] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in C-RAN with mobile cloud,” IEEE Transac-
tions on Cloud Computing, vol. 6, no. 3, pp. 760–770, 2018.

[20] Q. Liu, T. Han, and N. Ansari, “Energy-efficient on-demand resource
provisioning in cloud radio access networks,” IEEE Transactions on
Green Communications and Networking, vol. 3, no. 4, pp. 1142–1151,
2019.

[21] C.-C. Hu, “Minimizing executing and transmitting time of task schedul-
ing and resource allocation in c-rans,” Future Generation Computer
Systems, vol. 108, pp. 349 – 360, 2020.

[22] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task
offloading and resource allocation for mobile edge computing in dense
cloud RAN,” IEEE Internet of Things Journal, 2020.

[23] L. Chen, T. Nguyen, D. Yang, M. Nogueira, C. Wang, and D. Zhang,
“Data-driven c-ran optimization exploiting traffic and mobility dynamics
of mobile users,” IEEE Transactions on Mobile Computing, 2020.

[24] A. Samanta, Z. Chang, and Z. Han, “Latency-oblivious distributed task
scheduling for mobile edge computing,” in IEEE Global Communica-
tions Conference (GLOBECOM), 2018, pp. 1–7.

[25] A. Samanta and Z. Chang, “Adaptive service offloading for revenue
maximization in mobile edge computing with delay-constraint,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3864–3872, 2019.

[26] A. Samanta, L. Jiao, M. Mühlhäuser, and L. Wang, “Incentivizing
microservices for online resource sharing in edge clouds,” in IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
2019, pp. 420–430.

[27] A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled iot,” IEEE Internet of Things Journal, 2020.

[28] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[29] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment
and resource allocation for d2d-enabled mobile-edge computing,” IEEE
Transactions on Communications, vol. 67, no. 6, pp. 4193–4207, 2019.

[30] E. El Haber, T. M. Nguyen, and C. Assi, “Joint optimization of
computational cost and devices energy for task offloading in multi-tier
edge-clouds,” IEEE Transactions on Communications, vol. 67, no. 5, pp.
3407–3421, 2019.

[31] M. Sheng, Y. Wang, X. Wang, and J. Li, “Energy-efficient multiuser
partial computation offloading with collaboration of terminals, radio ac-
cess network, and edge server,” IEEE Transactions on Communications,
vol. 68, no. 3, pp. 1524–1537, 2020.

[32] Y. Li, M. Bhopalwala, S. Das, J. Yu, W. Mo, M. Ruffini, and D. C.
Kilper, “Joint optimization of BBU pool allocation and selection for

C-RAN networks,” in Optical Fiber Communications Conference and
Exposition (OFC), March 2018, pp. 1–3.

[33] F. Musumeci, C. Bellanzon, N. Carapellese, M. Tornatore, A. Pattavina,
and S. Gosselin, “Optimal BBU placement for 5G C-RAN deployment
over WDM aggregation networks,” Journal of Lightwave Technology,
vol. 34, no. 8, pp. 1963–1970, 2016.

[34] M. Shehata, O. Ayoub, F. Musumeci, and M. Tornatore, “Survivable
BBU placement for C-RAN over optical aggregation networks,” in IEEE
International Conference on Transparent Optical Networks (ICTON),
July 2018, pp. 1–4.

[35] B. M. Khorsandi, C. Raffaelli, M. Fiorani, L. Wosinska, and P. Monti,
“Survivable BBU hotel placement in a C-RAN with an optical WDM
transport,” in IEEE International Conference Design of Reliable Com-
munication Networks (DRCN), March 2017, pp. 1–6.

[36] B. M. Khorsandi and C. Raffaelli, “BBU location algorithms for
survivable 5G C-RAN over WDM,” Computer Networks, vol. 144, pp.
53 – 63, 2018.

[37] B. M. Khorsandi, F. Tonini, and C. Raffaelli, “Design methodologies and
algorithms for survivable C-RAN,” in IEEE International Conference on
Optical Network Design and Modeling (ONDM), 2018, pp. 106–111.

[38] N. Mharsi and M. Hadji, “Edge computing optimization for efficient rrh-
bbu assignment in cloud radio access networks,” Computer Networks,
vol. 164, p. 106901, 2019.

[39] A. Younis, T. X. Tran, and D. Pompili, “Bandwidth and energy-aware
resource allocation for cloud radio access networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 10, pp. 6487–6500, 2018.

[40] X. Li, J. Wu, S. Tang, and S. Lu, “Let’s stay together: Towards traffic
aware virtual machine placement in data centers,” in IEEE INFOCOM
2014-IEEE conference on computer communications. IEEE, 2014, pp.
1842–1850.

[41] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual
machine placement schemes in cloud computing,” Journal of Network
and Computer Applications, vol. 66, pp. 106 – 127, 2016.

[42] Y. Zhu, Y. Liang, Q. Zhang, X. Wang, P. Palacharla, and M. Sekiya,
“Reliable resource allocation for optically interconnected distributed
clouds,” in Proc. of IEEE International Conference on Communications
(ICC), 2014, pp. 3301–3306.

[43] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization in the
mobile cloud computing environment,” IEEE Transactions on Services
Computing, vol. 8, no. 2, pp. 175–186, 2014.

[44] Z. Cai, X. Li, and R. Ruiz, “Resource provisioning for task-batch based
workflows with deadlines in public clouds,” IEEE Transactions on Cloud
Computing, 2017.

[45] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, 2018.

[46] M. Leconte, A. Destounis, and G. Paschos, “Traffic engineering with
precomputed pathbooks,” in IEEE INFOCOM, 2018.

[47] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[48] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
2017.

[49] C.-L. Li, S. McCormick, and D. Simchi-Levi, “The complexity of
finding two disjoint paths with min-max objective function,” Discrete
Applied Mathematics, vol. 26, no. 1, pp. 105 – 115, 1990.

[50] K. M. Anstreicher, “Linear programming in o ([n3/ln n] l) operations,”
SIAM Journal on Optimization, vol. 9, no. 4, pp. 803–812, 1999.

[51] R. Tarjan, Course: Advanced Algorithm Design. Lecture: Chernoff,
Probability and Computing. Princeton University, 2009.

[52] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite
Expansions. Springer Netherlands, 1974.

[53] H. Xu, Z. Yu, X. Y. Li, L. Huang, C. Qian, and T. Jung, “Joint
route selection and update scheduling for low-latency update in SDNs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3073–3087,
2017.

[54] S.-C. Lin, P. Wang, I. Akyildiz, and M. Luo, “Towards optimal network
planning for software-defined networks,” IEEE Transactions on Mobile
Computing, 2018.

[55] H. Wang, X. Yu, H. Xu, J. Fan, C. Qiao, and L. Huang, “Integrating
coflow and circuit scheduling for optical networks,” IEEE Transactions
on Parallel and Distributed Systems, 2018.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3010533, IEEE Internet of
Things Journal

14

[56] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM, 2019, pp. 10–18.

[57] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[58] K. Calvert and E. Zegura, “Gt-itm: Georgia tech internetwork topology
models,” 1996.

[59] K. Gardner, S. Borst, and M. Harchol-Balter, “Optimal scheduling for
jobs with progressive deadlines,” in INFOCOM, 2015, pp. 1113–1121.

[60] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Improving
traffic forecasting for 5G core network scalability: A machine learning
approach,” IEEE Network, vol. 32, no. 6, pp. 42–49, 2018.

Song Yang is currently an associate professor at
School of Computer Science in Beijing Institute of
Technology, China. Song Yang received the B.S.
degree in software engineering and the M.S. de-
gree in computer science from Dalian University
of Technology, Dalian, Liaoning, China, in 2008
and 2010, respectively, and the Ph.D. degree from
Delft University of Technology, The Netherlands, in
2015. From August 2015 to August 2017, he worked
as postdoc researcher for the EU FP7 Marie Curie
Actions CleanSky Project in Gesellschaft für wis-

senschaftliche Datenverarbeitung mbH Göttingen (GWDG), Göttingen, Ger-
many. His research interests focus data communication networks, cloud/edge
computing and network function virtualization. He is a member of IEEE and
ACM.

He Nan is currently a Ph.D. student in the School of
Computer Science and Technology, Beijing Institute
of Technology. Her research interests include net-
work function virtualization and network resource
optimization management based on reinforcement
learning.

Fan Li received the PhD degree in computer science
from the University of North Carolina at Charlotte
in 2008, MEng degree in electrical engineering from
the University of Delaware in 2004, MEng and
BEng degrees in communications and information
system from Huazhong University of Science and
Technology, China in 2001 and 1998, respectively.
She is currently a professor at School of Computer
Science in Beijing Institute of Technology, China.
Her current research focuses on wireless networks,
ad hoc and sensor networks, and mobile computing.

Her papers won Best Paper Awards from IEEE MASS (2013), IEEE IPCCC
(2013), ACM MobiHoc (2014), and Tsinghua Science and Technology (2015).
She is a member of IEEE and ACM.

Stojan Trajanovski received his PhD degree (cum
laude, 2014) from Delft University of Technology,
The Netherlands and his master degree in Advanced
Computer Science (with distinction, 2011) from the
University of Cambridge, United Kingdom. He is
currently an applied scientist in Microsoft, working
in London, UK and Bellevue, WA, USA. He was in
a similar role with Philips Research in Eindhoven,
The Netherlands from 2016 to 2019. Before that, he
spent some time as a postdoctoral researcher at the
University of Amsterdam and at Delft University of

Technology. He successfully participated at international science olympiads,
winning a bronze medal at the International Mathematical Olympiad (IMO)
in 2003. His main research interests include network science & complex
networks, machine learning, game theory, and optimization algorithms.

Xu Chen is a Full Professor with Sun Yat-sen
University, Guangzhou, China, and the vice director
of National and Local Joint Engineering Labora-
tory of Digital Home Interactive Applications. He
received the Ph.D. degree in information engineering
from the Chinese University of Hong Kong in 2012,
and worked as a Postdoctoral Research Associate at
Arizona State University, Tempe, USA from 2012
to 2014, and a Humboldt Scholar Fellow at Institute
of Computer Science of University of Goettingen,
Germany from 2014 to 2016. He received the pres-

tigious Humboldt research fellowship awarded by Alexander von Humboldt
Foundation of Germany, 2016 Thousand Talents Plan Award for Young
Professionals of China, and Best Paper Award of 2017 IEEE Intranational
Conference on Communications (ICC). He is currently an Associate Editor
of IEEE Internet of Things Journal and IEEE Journal on Selected Areas in
Communications (JSAC) Series on Network Softwarization and Enablers.

Yu Wang is currently a Professor in the Department
of Computer and Information Sciences at Temple
University. Prior to joining Temple University, he
was a Professor of Computer Science at the Uni-
versity of North Carolina at Charlotte (UNC Char-
lotte). He holds a Ph.D. from Illinois Institute of
Technology, an MEng and a BEng from Tsinghua
University, all in Computer Science. His research
interest includes wireless networks, smart sensing,
and mobile computing. He has served as Editorial
Board Member of several international journals,

including IEEE Transactions on Parallel and Distributed Systems. He is a
recipient of Ralph E. Powe Junior Faculty Enhancement Awards from Oak
Ridge Associated Universities (2006), Outstanding Faculty Research Award
from College of Computing and Informatics at UNC Charlotte (2008), and
Fellow of IEEE (2018). He is also a senior member of ACM and a member
of AAAS.

Xiaoming Fu received his Ph.D. in computer sci-
ence from Tsinghua University, Beijing, China in
2000. He was then a research staff at the Technical
University Berlin until joining the University of
Göttingen, Germany in 2002, where he has been
a professor in computer science and heading the
Computer Networks Group since 2007. Prof. Fu’s
research interests include network architectures, pro-
tocols, and applications. He is currently an editorial
board member of IEEE Communications Magazine,
IEEE Transactions on Network and Service Manage-

ment, and Elsevier Computer Communications, and has served on the orga-
nization or program committees of leading conferences such as INFOCOM,
ICNP, ICDCS, MOBICOM, MOBIHOC, CoNEXT, ICN and COSN. He is
an IEEE Senior Member, an IEEE Communications Society Distinguished
Lecturer, a fellow of IET and member of the Academia Europaea.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on July 22,2020 at 03:58:09 UTC from IEEE Xplore. Restrictions apply.

