
1

Delay-Aware Virtual Network Function
Placement and Routing in Edge Clouds
Song Yang, Member, IEEE, Fan Li, Member, IEEE, Stojan Trajanovski, Member, IEEE,

Xu Chen, Member, IEEE, Yu Wang, Fellow, IEEE, and Xiaoming Fu, Senior Member, IEEE

Abstract—Mobile Edge Computing (MEC) offers a way to shorten the cloud servicing delay by building the small-scale cloud
infrastructures at the network edge, which are in close proximity to the end users. Moreover, Network Function Virtualization (NFV) has
been an emerging technology that transforms from traditional dedicated hardware implementations to software instances running in a
virtualized environment. In NFV, the requested service is implemented by a sequence of Virtual Network Functions (VNF) that can run
on generic servers by leveraging the virtualization technology. Service Function Chaining (SFC) is defined as a chain-ordered set of
placed VNFs that handles the traffic of the delivery and control of a specific application. NFV therefore allows to allocate network
resources in a more scalable and elastic manner, offer a more efficient and agile management and operation mechanism for network
functions and hence can largely reduce the overall costs in MEC. In this paper, we study the problem of how to place VNFs on edge
and public clouds and route the traffic among adjacent VNF pairs, such that the maximum link load ratio is minimized and each user’s
requested delay is satisfied. We consider this problem for both totally ordered SFCs and partially ordered SFCs. We prove that this
problem is NP-hard, even for the special case when only one VNF is requested. We subsequently propose an efficient randomized
rounding approximation algorithm to solve this problem. Extensive simulation results show that the proposed approximation algorithm
can achieve close-to-optimal performance in terms of acceptance ratio and maximum link load ratio.

Index Terms—Network function virtualization, mobile edge computing, delay, placement, routing.

F

1 INTRODUCTION

C LOUD computing [1] is a distributed computing and
storage paradigm, which can provide virtually unlim-

ited scalable service over the Internet for on-demand data-
intensive applications. Data centers are usually the cloud
computing-enabled infrastructures, and are located on some
core router nodes in backbone networks. However, delay-
sensitive applications for remote end users suffer from the
long-distance network transmission delay, which remains
a crucial drawback for cloud computing. The concept of
Mobile Edge Computing (MEC) [2] has been proposed
to bring the computing resources closer to end users by
installing small resource-limited cloud infrastructures at the
network edge (also called edge clouds), so as to provide
delay-guaranteed services to end users.

Moreover, in the traditional network services provision-
ing paradigm, network functions (e.g., firewall or load bal-
ancer) which are also called middleboxes are usually imple-
mented by the dedicated hardware appliances. Deploying
hardware middleboxes is costly due to their high cost for
design and production and also these middleboxes need

• S. Yang and F. Li are with the School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100081, China. E-mail: {S.Yang,
fli}@bit.edu.cn

• S. Trajanovski is with Philips Research, 5656 AE Eindhoven, The Nether-
lands. E-mail: stojan.trajanovski@philips.com

• X. Chen is with the School of Data and Computer Sci-
ence, Sun Yat-sen University, Guangzhou 510006, China. Email:
chenxu35@mail.sysu.edu.cn.

• Y. Wang is with Department of Computer and Information Sciences,
Temple University, Philadelphia, Pennsylvania 19122, USA. Email:
wangyu@temple.edu

• X. Fu is with Institute of Computer Science, University of Göttingen,
37077 Göttingen, Germany. Email: Fu@cs.uni-goettingen.de

to be configured and managed manually, which further in-
creases the costs of service providers. Network Function Vir-
tualization (NFV) which is first proposed by the European
Telecommunications Standards Institute (ETSI) [3], [4] has
been emerged as an appealing solution, since it enables to
replace dedicated hardware implementations with software
instances running in a virtualized environment. In NFV, the
requested service is implemented by a sequence of Virtual
Network Functions (VNF) that can run on generic servers by
leveraging the virtualization technology. Service Function
Chaining (SFC) is therefore defined as a chain-ordered set
of placed VNFs that handles the traffic of the delivery and
control of a specific application [5]. NFV allows to allocate
network resources in a more scalable and elastic manner,
offer a more efficient and agile management and operation
mechanism for network functions and hence can largely
reduce the overall costs.

Applying NFV to MEC will not only shorten servicing
delay for end users but service providers will also benefit
from lower expenditures and higher efficiency. The user
requested service, in this context, consists of a sequence
of VNFs that need to be placed on edge or public clouds.
Considering that the edge cloud has limited capacity, it is
also suggested [6], [7], [8], [9] to connect the edge clouds
together in order to expose services to more nearby end
users by efficiently utilizing and sharing the capacity and
load of edge clouds. Even this, the connected edge clouds
may sometimes fail to satisfy all the end users when users’
requested resources increase. Hence, the edge clouds also
need to collaborate with remote public cloud with sufficient
capacity by placing requested VNFs on it for the users who
ask for delay-tolerant services via e.g., long distance core

2

Edge cloud

Public cloud

Edge cloud

Edge cloud

Core

networks

Fig. 1: A Mobile Edge Computing framework.

networks, which can be shown in Fig. 1. This deals with
where to place the VNFs and how to route the traffic by
selecting appropriate paths during the whole SFC according
to the user’s delay requirement. In this paper, we study how
to place each user’s requested VNFs on edge and public
clouds, and route the packets among these VNFs in order to
minimize the maximum link load ratio and meet each user’s
delay requirement. Our key contributions are as follows:

• We analyze the traversing delay calculation in edge
clouds for both totally ordered SFC and partially
ordered SFC.

• We define the Delay-aware VNF Placement and
Routing (DVPR) problem in edge clouds and prove
it is NP-hard.

• We propose a randomized rounding approximation
algorithm to solve the DVPR problem.

• We conduct extensive simulations to validate the
performances of the proposed algorithm with three
heuristics.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work. Section 3 models traversing
delay for both totally ordered SFC and partially ordered
SFC in edge clouds. Section 4 defines the delay-aware VNF
placement and routing problem in edge clouds, formulates
it as an exact INLP and proves it is NP-hard. In Section 5, we
propose an approximation algorithm to solve this problem.
Section 6 provides the simulation results and we conclude
in Section 7.

2 RELATED WORK

A survey about computation offloading and computation
resources allocation in MEC can be found in [10]. Mao
et al. [11] provide an overview about the communication
models and resource management in MEC such as MEC
server scheduling and cooperative computing. Moreover,
a comprehensive survey about NFV can be found in [12],
[13], [14]. Herrera and Botero [15] provide a survey about
resource allocation in NFV.

2.1 Traffic/Cost-Aware VNF Placement and Routing in
Generic Networks

Mehraghdam et al. [16] first explores the VNF placement
problem by presenting an ILP to solve this problem. Eramo
et al. [17] target the VNF placement and routing problem
with the goal of maximizing the amount of data that can
be processed within the network at peak traffic time in-
terval. They subsequently study how to consolidate VNFs
and shut down unused servers when traffic demands de-
crease such that the total operation cost (energy consump-
tion+revenue loss) is minimized. They propose an exact
Integer Linear Programming (ILP) and an efficient heuristic
to solve the problem. Cohen et al. [18] propose a near-
optimal approximation algorithm to place VNFs without
considering network function dependency. Kuo et al. [19]
relax/approximate the VNF placement and routing problem
based on the intuition that placing VNFs on a shorter path
consumes less link bandwidth, but might also reduce VM
reuse opportunities; reusing more VMs might lead to a
longer path, and so it consumes more link bandwidth. Guo
et al. [20] jointly consider the VNF placement and routing
problem in data centers. They propose a randomized ap-
proximation algorithm when the traffic matrix is known
in advance and a competitive online algorithm when the
future arriving traffic is not known. However, they assume
that one configuration in data centers consists of one VNF
placement and one routing path solution, and a (limited)
set of configurations is given. The delay is not taken into
account in these papers. Gupta et al. [21] develop a column-
generation-based approaches to solve the VNF placement
and routing problem. Liu et al. [22] present a column-
generation-based approache to solve the SFC readjustment
problem. Bhamare et al. [23] deal with VNF placement in a
multi-cloud scenario with constraints of deployment costs
and servicing delay by proposing an ILP and an affinity-
based approach heuristic. A Minimum-Residue heuristic is
also presented in [24] for VNF placement in multi-cloud
scenario. However, the path selection problem among VNF
pairs are not considered in [23], [24].

It is worthwhile to mention that the Virtual Machine
(VM) placement problem is similar to the VNF placement.
However, the communication/routing path between each
VM pair do not necessarilty form a SFC, which makes it
different from the VNF placement problem. Please see these
works in e.g., [25], [26], [27], [28].

2.2 Delay-Aware VNF Placement and Routing in
Generic Networks

Qu et al. [29] consider the VNF transmission and processing
delays, and formulate the joint problem of VNF placement
and routing as a Mixed Integer Linear Program (MILP).
However, they assume that the virtual link between two
physical nodes can at most process one traffic flow at one
time. Alameddine et al. [30] jointly consider the network
function mapping, traffic routing and the deadline-aware
service scheduling problem, where it is assumed that the
requested VNFs have already been placed on network
nodes. They propose a tabu search-based algorithm and two
straightforward heuristics to solve this problem. Zhang et al.
[31] devise an Alternating Direction Method of Multipliers

3

(ADMM)-based algorithm to solve the delay-aware VNF
placement and routing problem without considering the
nodes’ processing delay in their problem. Li et al. [32]
address the delay-aware middlebox placement and routing
problem by leveraging a packet queuing model. Sun et al.
[33] implement a framework that enables (independent)
network functions to work in parallel, which improves NFV
performance in terms of delay, but this comes at the expense
of increasing network resource (e.g., network bandwidth).
By duplicating an original graph with m connected copy
graphs, Huin et al. [34] present a mathematical formulation
with the aid of column generation (using a limited number
of configurations) that can scale well with problem inputs
(e.g., number of requests or nodes). Allybokus et al. [35]
propose an exact ILP and a greedy heuristic to solve the
VNF placement and routing problem for both fully and
partially ordered SFCs. However, their solutions only con-
sider a simple path within a SFC. Dwaraki and Wolf [36]
devise a layered-graph based heuristic to solve the delay-
aware traffic routing problem when the VNFs are assumed
to be placed on network nodes. Similarly, Pei et al. [37]
devise a layered-graph based heuristic to jointly solve the
delay-aware VNF placement and routing problem. In [38],
we present an exact INLP and a recursive heuristic to solve
the delay-aware and availability-aware VNF placement and
routing problem in generic networks.

2.3 Delay-Aware VNF/Rule Placement and Routing in
Edge Clouds and Software Defined Networks (SDN)

Hou et al. [39] suppose that the edge servers can host
limited κ number of services. When the requested service
does not exist in the edge servers, downloading this service
from cloud incurs a cost of ω, otherwise the provisioning
cost is negligible. Without any prior knowledge of future
traffic, they propose an online algorithm to configure κ
services on edge servers. Ma et al. [40] model the edge cloud
network as a queuing network, and they formulate the
system servicing delay problem as a convex optimization
problem. They subsequently present an algorithm with the
linear complexity to solve the proposed convex optimiza-
tion problem. Moreover, Saha et al. [41] target the QoS-
aware (such as delay and packet-loss) routing problem in
software defined IoT networks by considering the SDN rule
capacity constraint. They present an exact ILP as well as a
Yen’s k-shortest path-based heuristic. Bera et al. [42] present
an adaptive flow-rule placement scheme which consists
of three phases, namely (1) forwarding path selection, (2)
flow-rule placement and (3) rule redistribution. To solve
them, they respectively formulate (1) via a max-flow-min-
cost problem, devise two greedy heuristic approaches for
(2), and propose a rule redistribution scheme to detect rule
congestion at a switch.

Cziva et al. [43] tackle the VNF placement problem at
the network edge in order to minimize the total expected
latency from all users to their respective VNFs. They further
employ the Optimal Stopping Theory to determine when
to re-evaluate the optimal placement problem by taking
into account the migration cost and random path delay.
However, they assume that only one VNF is enough to
provide a service to one user instead of a sequence of VNFs.

Yang et al. [9] study how to place NFV-enabled service on a
minimum number of edge nodes and find routes from the
access point to the requested service located node in order to
meet the delay requirement. They propose a heuristic-based
incremental allocation mechanism to solve this problem.
Different form the work in [9], [43], we propose a general
model to quantitatively calculate flow traversing delay of
a SFC in edge clouds, and devise a randomized rounding
algorithm to jointly solve the delay-aware VNF placement
and traffic routing problem in edge clouds. Moreover, there
are also some studies about VNF placement in virtual
evolved packet core (4G/5G) networks [44], [45], Cloud-
Radio Access Networks [46], etc.

In the previous works, either an exact ILP algorithm
or an efficient heuristic is proposed to solve the general
VNF placement and routing problem. However, the exact
ILP solution has exponential running time which means
that it cannot scale well especially when the problem size
increases. The heuristics are shown to perform well in the
simulations under certain parameter settings, but it has no
performance guarantee, meaning that it may not always
output a feasible solution even if the optimal solution ex-
ists. Our contribution is devising a randomized rounding
approximation algorithm to (jointly) solve the delay-aware
VNF placement and routing problem in edge clouds. More-
over, our work can also be adjusted to solve the delay-aware
VNF placement and routing problem in generic networks.

3 NETWORK DELAY MODEL

3.1 Service Function Chaining

We consider traversing delays under two cases for VNFs
in a SFC, namely, (1) Totally Ordered SFC: there is a total
dependency order on the VNF set, and (2) Partially Ordered
SFC: there exists dependency among a subset of VNFs. That
is, there exists at least two VNFs, such that they have the
same predecessor function and successor function but they
have no dependencies with each other. The traversing delay
in the totally ordered SFC is calculated as follows:∑

f∈F,n∈N
Ψf
n +

∑
l∈pk

T (l) (1)

where Ψf
n represents the processing delay for function

f on node n, pk denotes the path that traverses each
placed VNF, and T (l) indicates the flow delivering de-
lay on link l. For example, Fig. 2(a) is a totally or-
dered SFC and the traversing delay in this chain is
(50 + 40 + 80 + 60)︸ ︷︷ ︸

total node delay

+ (15 + 20 + 25)︸ ︷︷ ︸
total link delay

= 290 ms.

However, since function monitor only maintains the
packets and does not change the packets, firewall and
monitor can work in parallel as shown in Fig. 2(b). After
that, firewall and monitor functions send their individual
processed packets to load balancer. As a result, load balancer
only needs to select the packets from firewall and process
them. The example in Fig. 2(b) belongs to the partially
ordered SFC. We partition the partially ordered SFC into
several segments and thus there is one or more independent
VNFs in each segment. For example, there are 3 segments in
Fig. 2(b): Segment 1 contains the function VPN, segment 2

4

A DB C

VPN Load balancerFirewall Monitor

50 ms 40 ms 80 ms 60 ms

15 ms 25 ms20 ms

(a) Totally Ordered SFC.

A D

B

C

VPN Load balancer

Firewall

Monitor

Packets

Packets

copy

15 ms

10 ms 25 ms

15 ms50 ms

80 ms

40 ms

60 ms

(b) Partially Ordered SFC.

Fig. 2: Totally Ordered SFC v.s. Partially Ordered SFC,
derived from [33].

is composed of functions firewall and monitor, and segment
3 has the function load balancer. As a result, the traversing
delay in a partially ordered SFC is equal to the longest path
delay from the node which hosts one of the VNFs in the
first segment to the node which contains one of the VNFs in
the last segment. For example, the traversing delay of SFC
in Fig. 2(b) is equal to (50 + 80 + 60)︸ ︷︷ ︸

total node delay

+ (10 + 25)︸ ︷︷ ︸
total link delay

= 225

ms, which is less than the one in Fig. 2(a). This example
also illustrates that the partially ordered SFC can reduce
delay compared to the totally ordered SFC. We notice that
the totally ordered SFC is a special case of the partially
ordered SFC, since when each segment contains only one
VNF, the partially ordered SFC becomes the totally ordered
SFC. Without loss of generality, we assume a (totally ordered
or partially ordered) SFC consists of a set of |M | segments
M , and each segment m ∈ M has |m| functions. We use
mi and mj to represent two consecutive segments, where
j = i + 1 and 1 ≤ i ≤ |M | − 1. In order to calculate the
traversing delay in a partially ordered SFC with segments
M , we first make the definition of totally ordered sub-SFC as
follows:

Definition 1. totally ordered sub-SFC: Suppose there is
a partially ordered SFC C with segment set M . A totally
ordered sub-SFC is a chaining consisting of exactly one VNF
in each segment.

According the above definition, there are in total
|M |∏
i=1
|mi|

totally ordered sub-SFCs. For example in Fig. 2(b), there are
1 · 2 · 1 = 2 totally ordered sub-SFCs, namely A → B → D
and A→ C → D. As a result, the delay value of a partially
ordered SFC is the maximum delay value among all the
totally ordered sub-SFCs composing it.

E1

C

E2 E3

f2 f1 f3

f4

80 100 120

12 15

20 25 18

15

13

User1: f1-f2-f3

User3: f1-f2 User4: f1-f4

Edge clouds

Public cloud

 User2: f2-f4

Fig. 3: An example of calculating the delay in a SFC in edge
clouds.

3.2 Traversing Delay in a SFC in Edge Clouds

Assume that there is a set of edge clouds denoted by E
and one remote public cloud1 represented by C. Each edge
cloud E ∈ E builds a mount of edge servers along with the
base station in an area and serve the end users within the
coverage of the base station. The users within the coverage
of E is denoted by RE . In this sense, requests sent from
RE should be first received by the edge servers in E, and
if E cannot process these requests because of capacity limit,
it can relay these requests to other edge clouds or public
cloud. In this paper, we assume that any end user can only
be within the coverage of one edge cloud. For simplicity, we
assume that one end user sends only one request to the edge
cloud. The notations used in this paper are summarized in
Table 1.

Suppose there is a user ur who is within the coverage of
edge cloud E, and for simplicity ur requests a fully ordered
SFC consisting of h virtual network functions f1, f2, . . . , fh,
where fi is placed on node nfi for 1 ≤ i ≤ h. If T (ni, nj)
denotes the traversing delay between edge or cloud nodes
ni and nj , and Ψf

n indicates the VNF f ’s processing time on
node n, then the total delay for serving ur is2:

T (E,nf1) +
h∑
i=1

Ψfi
nfi

+
h−1∑
j=1

T (nfj , nfj+1
) (2)

where T (E,nf1) indicates the traversing delay from E to
nf1 . T (E,nf1) means that if f1 is not located in proxim-
ity to user in E, then we need to take into account the
traversing delay from E to its located edge cloud or public
cloud.

∑h
i=1 Ψfi

nfi
calculates the total node processing time,

and
∑h−1
j=1 T (nfj , nfj+1) calculates the total path delay. For

example in Fig. 3, there are three edge clouds and one public
cloud. Each edge cloud can only host one VNF because of
limited capacity for simplicity, and the public cloud host
two remaining VNFs. It is assumed that user 1 and user
2 belong to edge cloud E1. Moreover, edge cloud E2 and
edge cloud E3 serve user 3 and user 4, respectively. The

1. For simplicity, we only assume one public cloud in this paper, but
our work can also be extended to the case of multiple public clouds.

2. When an end user requests a partially ordered SFC, we can
calculate the delay of each totally ordered sub-SFC according to Eq. (2)
and take the maximum value as the final delay value.

5

TABLE 1: Notations.

Notation Description
E,S, C, The set of edge clouds, switch nodes and public cloud
N The set of N nodes that can host VNFs, i.e, N = E ∪ C
L, b(l), t(l) The set of L links, traffic load and delay of link l ∈ L
π(n), c(l) Capacity of node n ∈ N and link l ∈ L
G(N ,L) A network with set of nodes and links N and L
Pu,v ,K Path set between u and v, the number of paths in the set
T (pk) Delay of path pk

R
The set of requests. For each r(E, δ, F,D) ∈ R,
E indicates the edge cloud the request belongs to, δ represents the data transmitting rate,
F denotes a set of requested VNFs with predefined order, D means the requested delay

mi,mj Two consecutive segments for r, where j = i+ 1
fi, fj The i-th and j-th requested VNF for a totally ordered (sub-)SFC, where j = i+ 1
Br The set of totally ordered sub-SFCs of request r
F A set of total requested VNFs
η(f) The required processing capacity of VNF f
Ψf

n Processing time for VNF f on node n
Hu,v

l,k
A given boolean array indicating whether link l is traversed by path pk between u and v

λ A fractional variable meaning maximum link load ratio
Xr,f

n A boolean variable. It is 1 if r’s requested VNF f is placed on n; and 0 otherwise

Y r,i,j
u,v,k

A boolean variable. It is 1 if r’s requested fi and fj are
placed on node u and v, respectively, and pk ∈ Pu,v is selected; and 0 otherwise.

requested VNFs (SFC) are also shown in Fig. 3. When
calculating the traversing delay of requested SFC from the
request of user 1, the first requested VNF is not located
in edge cloud E1, therefore we must calculate the delay
from E1 to E2 (which is 12, since f1 is placed on E2),
and then calculate the delay of SFC f1 − f2 − f3, which
is (25 + 20 + 18)︸ ︷︷ ︸

total node delay

+ (12 + 13)︸ ︷︷ ︸
total link delay

= 88. As a result, the total

delay for serving the request from user 1 is 12 + 88 = 100.
Analogously, the delay for serving user 4 is 155. On the
other hand, the first requested VNF of user 2 and 3 is placed
in the edge cloud they belong to, therefore serving user 2
consumes a delay of 20 + 15 + 80 = 115, and serving user 3
incurs a delay of 25 + 20 + 12 = 57.

4 PROBLEM DEFINITION AND COMPLEXITY ANAL-
YSIS

4.1 Problem Definition

There is a set of edge clouds E , a set of switch/router nodes
S and a remote cloud C. Each edge cloud n ∈ E consisting of
a limited number of edge servers has a total capacity of π(n),
and the public cloud C is assumed to have infinite capacity.
Switch nodes are used to forward the traffic. Assume there
is a set L of L links to connect different nodes in E∪S∪C. For
ease of presentation, we let N = E ∪ C denote the node set
that can host VNFs, and we use N (which does not contain
the switch node set) without loss of generality to stand for
the node set in the network. Each VNF f ∈ F on node n ∈ N
requires time of Ψf

n to process it, and we use η(f) to denote
its processing capacity. Each link l ∈ L has a capacity of c(l),
and traversing delay of t(l). Let b(l) denote the total traffic
load on l, then the maximum link load ratio λ is defined
as: max{ b(l)c(l) , l ∈ L} and it is a single variable. For each
node pair (u, v) where u, v ∈ N , we assume that the path

set between them is known3 and denoted by Pu,v with a
number of K paths. R represents a set of |R| requests, and
for each request r(E, δ, F,D) ∈ R,E denotes the edge cloud
the request belongs to, δ stands for the data transmitted rate,
F ⊂ F indicates a set of |F | requested VNFs with predefined
order (totally or partially ordered), and D stands for the
total requested end-to-end delay. Similar to [9], [30], [31],
[34], [37], we assume that R is known or given. Formally,
the Delay-aware VNF Placement and Routing problem in
edge clouds can be defined as follows:

Definition 2. Given are a network G(N ,L), and a set of
requests R. For each request r(E, δ, F,D) ∈ R, the Delay-
aware VNF Placement and Routing (DVPR) problem in edge
clouds is to place its requested VNFs on N and find routes
among each adjacent VNF pair such that λ is minimized and
the total flow traversing delay is no greater than D.

The purpose of minimizing λ is to avoid the network
bottleneck, e.g., one or more links are highly loaded and
while some other links are less loaded. In network bottle-
neck scenario, the highly loaded link(s) are unavailable to
transport more data from a source to a destination because
of the lack of free capacity. In the worst case, there may not
exist bandwidth-free path from a specified source to a speci-
fied destination if these (critical) highly loaded links are not
available, or it may take longer delay by traversing some
more links from a source to a destination. Nevertheless,
we mention that our problem definition/formulation and
proposed approximation algorithm are general and flexible,
since we could also remove the objective or change to
select some other objectives. More specifically, if we remove
the objective, then the problem becomes to find the VNF
placement and traffic routing for each request in edge clouds
without violating the specified delay requirement. And the

3. According to [47], at most 6 paths in GÉANT network are enough
for serving 11460 traffic matrices during the entire 4 month duration
without violating Quality of Service (QoS). We therefore assume that
a (small) set of paths is sufficient for calculating the optimal solution.
This set of paths is precalculated and given in the problem.

6

respective approximation algorithm proposed in Section 5
can be slightly adjusted (by removing the objective and λ-
related constraints) to solve it as well.

4.2 An Exact Formulation
In this subsection, we formulate the DVPR problem as an
exact Integer Nonlinear Programming (INLP) formulation.
We begin with some necessary notations and variables.

INLP notations:
Hu,v
l,k : A given boolean array. It is 1 (true) if link l is

traversed by the path pk between u and v, and 0 (false)
otherwise.

T (pk): Delay of path pk.
F: The set of total requested |F| VNFs. For ease of

calculation of traversing delay, for each request r, we add
two dummy VNFs f0 as the first VNF of the chain and f|F|+1

as the last VNF of the chain, with η(f0) = η(f|F|+1) = 0 and
Ψf0
n = Ψ

f|F|+1
n = 0, where n ∈ N .

Br : The set of totally ordered sub-SFCs of request r.
fi, fj : The i-th and j-th requested VNF for r, where 0 ≤

i ≤ |F|, j = i+ 1 (two consecutive VNFs).
INLP variables:
λ: A float variable ranging in [0, 1] that represents the

link load factor or ratio.
Xr,f
n : A boolean variable. It is 1 (true) if r’s requested

VNF f is placed on n; and 0 (false) otherwise.
Y r,i,ju,v,k: A boolean variable. It is 1 (true) if r’s requested

fi and fj are placed on node u and v, respectively, and
pk ∈ Pu,v is selected; and 0 (false) otherwise.

Objective:

min λ (3)

Placement Constraints:

∑
n∈N

Xr,f
n = 1 ∀r ∈ R : f ∈ r.F (4)

∑
u,v

∑
pk∈Pu,v

Y r,i,ju,v,k = 1 ∀r ∈ R,B ∈ Br, fi, fj ∈ B (5)

Path Selection Constraint:

Xr,fi
u ·Xr,fj

v =
∑

pk∈Pu,v
Y r,i,ju,v,k ∀r ∈ R,B ∈ Br,

fi, fj ∈ B, u, v ∈ N (6)

Delay Constraint:

∑
fi,fj∈B

∑
u,v∈N

(Xr,fi
u ·Xr,fj

v ·
∑

pk∈Pu,v

Y r,i,j
u,v,k · (T (pk) +

Φ
fi
u + Φ

fj
v

2
)))

(7)
≤ D ∀r ∈ R,B ∈ Br

Edge Cloud Capacity Constraint:

∑
f∈F

max
r∈R:f∈r.F

Xr,f
n · η(f) ≤ π(n) ∀n ∈ N\C (8)

Link Capacity Constraint:

∑
r∈R

∑
B∈Br

∑
fi,fj∈B

∑
u,v∈N

∑
pk∈Pu,v

Y r,i,ju,v,k ·H
u,v
l,k · r.δ ≤ λ · c(l)

∀l ∈ L (9)

Eq. (3) minimizes the maximum link load ratio. Eq. (4)
ensures that for each user’s requested VNF f , it must be
placed on one node in the network. Eq. (5) ensures that for
each requested VNF pair fi, fj in a totally ordered sub-SFC,
they must be placed on one or two nodes. The above two
placement constraints are set for variables Xr,f

n and Y r,i,ju,v,k,
respectively, and Eq. (6) establishes the equality relation
between Xr,f

n and Y r,i,ju,v,k. More specifically, Eq. (6) indicates
that when request r places fi and fj on u and v, respectively,
only one path between u and v can be selected to use. Eq. (7)
ensures that for each request the total traversing delay in
each sub-ordered SFC is no greater than D. In particular,∑
fi,fj

(Φfiu + Φ
fj
v)/2 calculates the total node processing

delay. This is because f1, f2, . . . have been counted twice
in Eq. (7), we take the sum of Φfiu + Φ

fj
v and let it be

divided by 2. Eq. (8) ensures that each edge cloud’s capacity
is not violated. Eq. (9) ensures that each link’s load does not
exceed to λ times its total capacity.

4.3 Complexity Analysis

Theorem 1. The DVPR problem is NP-hard, even when
|F| = 1 and |R| ≥ 2.

Proof: Since totally ordered SFC is a special case of
partially ordered SFC, we only analyze the problem com-
plexity for the totally ordered SFC without loss of generality.
Ma et al. [48] prove that the general VNF placement and
routing problem can be reduced to the NP-hard Hamilto-
nian cycle problem [49], which means that the problem is
also NP-hard. Next, we will prove that even when |F| = 1
and |R| ≥ 2, the DVPR problem is still NP-hard.

Assuming that there are two edge clouds, E1 and E2.
Two user requests r1 and r2 which are both in proximity of
E1 ask for VNF f1 and f2, respectively. It is assumed that
E1 has no spare capacity and therefore f1 and f2 have to
be placed on E2. Moreover, we assume c(l) = r1.δ = r2.δ,
∀l ∈ L. In this sense, each link can only be traversed by at
most one time and λ = 1 in the optimal solution. Hence,
the DVPR problem is to find two link-disjoint paths from
E1 to E2 such that each path delay is no greater than the
specified delay value. Now, the DVPR problem is equivalent
to the NP-hard min-max problem [50], which is to find
two link-disjoint paths from a source to a destination, such
that the longer path delay (denoted by Tx) is minimized, if
we assume max(r1.D, r2.D) = Tx. The proof is therefore
complete.

5 APPROXIMATION ALGORITHM

Considering that the exact INLP solution has exponen-
tial running time [51] because of its boolean variables
and nonlinear constraints, it cannot scale well especially
when the problem size increases. In this section we pro-
pose a polynomial-time approximation algorithm to solve
the DVPR problem. We first transform the exact INLP in

7

Eqs. (3)-(9) to a Linear Programming (LP). After solving the
LP, we subsequently achieve a solution via the randomized
rounding method with proved bounded approximation ra-
tio.

5.1 Transformation from the INLP to the LP
First, using Eq. (6) into Eq. (7) we get:

∑
fi,fj∈B

∑
u,v∈N

(
∑

pk∈Pu,v

Y r,i,j
u,v,k ·

∑
pk∈Pu,v

Y r,i,j
u,v,k · (T (pk) +

Φ
fi
u + Φ

fj
v

2
))

≤ D ∀r ∈ R,B ∈ Br (10)

It is important to notice that Y r,i,ju,v,k takes binary values
in {0, 1} and if we decompose the two innermost sum
into products we get pairwise products in Y r,i,ju,v,k. However,
according to the placement constraint (Eq. (5)) there is a
single Y r,i,ju,v,k equals to 1 and all the rest are 0 for a fixed
r. Hence, all the pairwise products of Y r,i,ju,v,k in Eq. (10) are
0, except for one that is (Y r,i,ju,v,k)2 = Y r,i,ju,v,k. Finally, Eq. (10)
boils down to the following equivalent constraint of Eq. (7):

∑
fi,fj∈B

∑
u,v∈N

 ∑
pk∈Pu,v

Y r,i,ju,v,k · (T (pk) +
Φfiu + Φ

fj
v

2
)

 ≤ D
∀r ∈ R,B ∈ Br (11)

Second, considering that Eq. (6) is nonlinear, we trans-
form it to the following equivalent linear constraints with-
out losing any accuracy:

Xr,fi
u ≥

∑
pk∈Pu,v Y

r,i,j
u,v,k

X
r,fj
v ≥

∑
pk∈Pu,v Y

r,i,j
u,v,k

Xr,fi
u +X

r,fj
v − 1 ≤

∑
pk∈Pu,v Y

r,i,j
u,v,k

∀r ∈ R,B ∈ Br, fi, fj ∈ B, u, v ∈ N

(12)

After the transformation, we have the following relaxed
Linear Programming (LP) to solve the DVPR problem,
where Y r,i,ju,v,k and Xr,f

n are set to be a fractional number
(∈ [0, 1]).

min λ

s.t.

∑
n∈N

Xr,f
n = 1 ∀r ∈ R, f ∈ r.F∑

u,v

∑
pk∈Pu,v

Y r,i,ju,v,k = 1 ∀r ∈ R,B ∈ Br, fi, fj ∈ B

Xr,fi
u ≥

∑
pk∈Pu,v

Y r,i,ju,v,k

X
r,fj
v ≥

∑
pk∈Pu,v

Y r,i,ju,v,k

Xr,fi
u +X

r,fj
v − 1 ≤

∑
pk∈Pu,v

Y r,i,ju,v,k

∀r ∈ R,B ∈ Br, fi, fj ∈ B, u, v ∈ N∑
fi,fj∈B

∑
u,v∈N

(∑
pk∈Pu,v

Y r,i,ju,v,k · (T (pk) + Φ
fi
u +Φ

fj
v

2)

)
≤ D ∀r ∈ R,B ∈ Br∑
f∈F

max
r∈R:f∈r.f

Xr,f
n · η(f) ≤ π(n) ∀n ∈ N\C∑

r∈R

∑
B∈Br

∑
fi,fj∈B

∑
u,v∈N

∑
pk∈Pu,v

Y r,i,ju,v,k ·H
u,v
l,k · r.δ

≤ λ · c(l) ∀l ∈ L
(13)

5.2 Randomized Rounding Approximation Algorithm
In this subsection, we present the Randomized Rounding
VNF placement and routing Algorithm (RRVA) in Algo-
rithm 1 to solve the DVPR problem.

Algorithm 1: RRVA (G(N ,L), R,F)

1 Solve the LP in Eq. (13) to obtain Ỹ r,i,ju,v,k

2 Ht[R][F]← null, Rt[R][F][F]← 0, At[R]← true
3 foreach request r ∈ R do
4 foreach B ∈ Br do
5 nx ← r.E
6 foreach fi, fj ∈ B do
7 if Ht[r][fi] 6= null && Ht[r][fj] 6= null

then
8 nx ← Ht[r][fj]
9 else

10 P ← ∅, Q← ∅

11 if Ỹ r,i,ju,v,k > 0 && u == nx then
12 if u == v then

13 P.Add(Ỹ r,i,ju,v,k)
14 else

15 Q.Add(Ỹ r,i,ju,v,k)

16 if P 6= ∅ then
17 Pick v with maximum node

capacity from P such that

Ỹ r,i,ju,v,k > 0 and u == Ht[r][fi] if
Ht[r][fi] 6= null

18 π(v)← π(v)− η(fj), Ht[r][fi]←
u,Ht[r][fj]← v,Rt[r][fi][fj]← 0

19 else if Q 6= ∅ then

20 Randomly select Ỹ r,i,ju,v,k > 0 from Q
such that u == Ht[r][fi] if
Ht[r][fi] 6= null

21 π(v)← π(v)− η(fj), nx ←
v,Ht[r][fi]← u,Ht[r][fj]←
v,Rt[r][fi][fj]← pk

22 Prune the link bandwidth
according to the selected path pk

based on Ỹ r,i,ju,v,k

The rational of RRVA in Algorithm 1 is that after solv-

ing LP in Eq. (13), we first get fractional solutions Ỹ r,i,ju,v,k

(and X̃r,f
n). Our aim is to derive an integer solution from

Ỹ r,i,ju,v,k > 0 by randomized rounding. To that end, RRVA first
uses Ht[R][F] to store which node to host the requested
VNF f of r, and uses Rt[R][F][F] to store which path to
route traffic from r’s requested fi to fj . When fi and fj are
placed on the same node, Rt[r][fi][fj] = 0. Moreover, At[R]
represents whether r is successfully served, and initially
is set to be true for all the requests. After that, for each
requested totally ordered sub-SFC B ∈ Br of request r,
and for each its requested VNF pair (fi, fj) ∈ B, RRVA
finds the appropriate nodes for hosting fi and fj and the

8

path to route the traffic between them if they are placed on
different nodes. Let nx be the node where fj is placed on
in each iteration. In particular, when fi and fj have already
been placed on the nodes in the previous iterations by other
totally ordered sub-SFC, Step 8 assigns nx with Ht[r][fj].
Otherwise, it indicates that at least fj is not placed on the

network. When Ỹ r,i,ju,v,k > 0, RRVA uses P to store the results
where fi and fj are placed on the same node, and uses Q
to store the results where fi and fj are placed on different

nodes. If P is not empty, RRVA selects one Ỹ r,i,ju,v,k from P
where the node u has maximum residual capacity to host
fi and fj . However, when Ht[r][fi] 6= null, it indicates that
fi has already been placed on the network by other totally
ordered sub-SFC determined by RRVA, and therefore we

need to select Ỹ r,i,ju,v,k > 0 from P where u = Ht[r][fi]. The
reason is that one VNF can only be placed on one node. If
P is empty and Q is not empty, RRVA randomly selects one

Ỹ r,i,ju,v,k from Q. Similarly, when Ht[r][fi] 6= null we need to

select Ỹ r,i,ju,v,k > 0 from Q where u = Ht[r][fi]. Because fi
except for f0 and f|F|+1 occurs twice in the algorithm, we
need to decrease the capacity of its hosted node only once,
which can be seen in steps 18 and 21. Accordingly, RRVA
prunes the link bandwidth that is traversed by the selected
path pk between u and v. The above procedure continues
until all the requests have been iterated.

The time complexity of RRVA can be analyzed like this:
The time complexity of RRVA is dominated by the LP in
Eq. (13). There exists efficient polynomial time algorithm to
solve the LP with the current best worst-case complexity
of O([I

3

ln I]γ) by an interior-point method according to [52],
where I is the number of variables and γ is the bit size of
the problem (related to the number of bits in its binary rep-
resentation). There are in totalO(|R||F |N+K|R||F |2N2) =
O(K|R||F |2N2) variables in Eq. (13), leading to a total time
complexity of O(γK

3|R|3|F |6N6

ln(K|R||F |2N2)) for RRVA, which indicates
it has polynomial running time.

5.3 Approximation Performance Analysis

The analysis leverages on the method of Upper Tail Cher-
noff bound [53] and Union Bound (Boole’s inequality) [54,
Chapter 4.7] — a technique often used in other works (see
e.g., [55], [56]). For completeness, we first give a formal
definition of the Upper Tail Chernoff bound and Union
Bound inequality:

Theorem 2. [53] Let x1, x2, . . . , xn be n independent
random variables, and xi ∈ [0, 1] for 1 ≤ i ≤ n. Denote
µ = E

[∑n
i=1 xi

]
, then for an an arbitrary positive ε we

have:

Pr

[
n∑
i=1

xi ≥ (1 + ε)µ

]
≤ e

−ε2µ
2+ε (14)

Theorem 3. Let A1, A2, . . . , An be n events with happening
probability Pr[A1], Pr[A2], . . . , Pr[An], then Pr[A1 ∪ A2 ∪
. . . ∪An] ≤

∑n
i=1 Pr[Ai].

Moreover, α is used to ensure that the following defined
expected values are fractional number and defined as fol-
lows:

α = min
{

min{ λ̃min(c(l))

r.δ
},min{ r.D

T (pk)
},min{π(n)

η(f)
}
}

∀r ∈ R, l ∈ L, n ∈ N , f ∈ F, pk ∈ Pu,v : u, v ∈ N (15)

where λ̃ is the lower bound of maximum link load ratio
value returned by the LP in Eq. (13). The proposed RRVA

rounds the fractional Ỹ r,i,ju,v,k solved from LP in Eq. (13) to
integer value and then derive the routing and placement4

solution. In the following, we will analyze the violating
factor in terms of link capacity, requested delay and node
capacity of RRVA.

5.3.1 Link capacity violating factor
Definition 3. For each request r and each link l, the traffic
load zrl is defined as follows:

zrl =

 r.δ with prob.
∑
r∈R

∑
B∈Br

∑
fi,fj∈B

∑
u,v∈N

∑
pk∈Pu,v

Ỹ r,i,j
u,v,k ·H

u,v
l,k

0 otherwise

Since zr1l , zr2l , . . . are mutually independent according to
their definition, the expected load on link l is:

E

[∑
r∈R

zrl

]
=
∑
r∈R

E[zrl] =
∑
r∈R

r.δ ·
∑
fi,fj

∑
u,v∈N

Ỹ r,i,ju,v,k ·H
u,v
l,k

≤ λ̃ · c(l) (16)

According to the definition of α in Eq. (15), it holds that
0 ≤ zrl ·α

λ̃·c(l)
≤ 1. Therefore, by dividing Eq. (16) with λ̃·c(l)

α on
both sides we have:

µc = E

[∑
r∈R

zrl · α
λ̃ · c(l)

]
≤ α (17)

Since α
µc
≥ 1, we have:

Pr

[∑
r∈R

zrl · α
λ̃ · c(l)

≥ (1 + ε)α

]
≤ Pr

[∑
r∈R

α

µc

zrl · α
λ̃ · c(l)

≥ (1 + ε)α

]
(18)

We cannot directly apply Theorem 2 for zrl ·α
λ̃·c(l)

with α,
however the following holds:

α =
α

µc
µc =

α

µc
E

[∑
r∈R

zrl · α
λ̃ · c(l)

]
= E

[∑
r∈R

α

µc

zrl · α
λ̃ · c(l)

]
(19)

By applying Theorem 2 for α
µc

zrl ·α
λ̃·c(l)

, based on Eq. (19):

Pr

[∑
r∈R

α

µc

zrl · α
λ̃ · c(l)

≥ (1 + ε)α

]
≤ e

−ε2α
2+ε (20)

4. According to Eq. (13), Xr,fi
u ≥

∑
pk∈Pu,v Y

r,i,j
u,v,k , so the VNF

placement solution achieved by RRVA can also be regarded as rounded
from X

r,fi
u .

9

where ε is an arbitrary positive value. Further, using in-
equalities from (18) and (20) together and introducing ∆,
we have:

Pr

[∑
r∈R

zrl

λ̃ · c(l)
≥ (1 + ε)

]
≤ e

−ε2α
2+ε ≤ ∆

N2
(21)

where ∆ is a network related variables and ∆ → 0 when
the network size grows. By solving Eq. (21), we have that

ε ≥
− log ∆

N +
√

log2 ∆
N2 − 8α log ∆

N2

2α
(22)

Theorem 4. RRVA can achieve a link capacity violating
factor of 4 logN

α + 3.

Proof: By setting ∆ = 1
N2 , Eq. (21) becomes:

Pr

[∑
r∈R

zrl

λ̃ · c(l)
≥ (1 + ε)

]
≤ 1

N4
, where ε ≥ 4 logN

α
+ 2.

(23)

By using Union Bound inequality in Theorem 3 for all
the links:

Pr

[⋃
l∈L

∑
r∈R

zrl

λ̃ · c(l)
≥ (1 + ε)

]
≤
∑
l∈L

Pr

[
zrl

λ̃ · c(l)
≥ (1 + ε)

]

≤ N2 · 1

N4
=

1

N2
, where ε ≥ 4 logN

α
+ 2 (24)

The last inequality holds since there are at most N2 links in
a network with N nodes. Finally, Eq. (24) indicates that the
probability the expected load on any link violates λ̃·c(l) with
a factor of 1 + ε = 4 logN

α + 3 approaches 0 when N → +∞.

Theorem 5. RRVA can achieve a delay violating factor of
log |R||Bx|+2 logN

α + 3.

Proof: For brevity, we have proved it in Appendix A.

Theorem 6. The randomized approximation algorithm can
achieve a node capacity violating factor of 3 logN

α + 3.

Proof: For brevity, we have proved it in Appendix B.

Theorem 7. The randomized approximation algorithm can
achieve a link bandwidth violating factor of 4 logN

α +3, delay
violating factor of log |R||Bx|+2 logN

α + 3, and node capacity
violating factor of 3 logN

α + 3.

Proof: The proof follows from Theorems 4, 5 and 6.

6 SIMULATIONS

6.1 Simulation Setup
We conduct simulations5 on two networks: USANet, dis-
played in Fig. 4, which is a realistic carrier backbone

5. The simulations were run on a high-performance desktop PC
with 3.40 GHz and 16 GB memory. We used IBM ILOG CPLEX
(CPLEX Callable Library interface) 12.6 to implement OPT LB, IBM
ILOG CPLEX 12.6 together with C# to implement RRVA, and C# to
implement the heuristic algorithms.

8

4

5

1

2

3

6

7

10

11

9

14

12

13

18

16

17

24

21

23

22

15 20

19

Fig. 4: USA carrier backbone network.

1 2

7

4

3

5

9

11

8

6

10
12

15

31

32

16
17

18
14 13

20
19

22 21

28

33

29

23

30

38

37

25

2624

27
34

36

39

40

35

Fig. 5: GÉANT pan-European research network.

network, and GÉANT, shown in Fig. 5, which is a pan-
European communications infrastructure. In both networks,
the solid red circled nodes are assumed to be edge clouds,
whose capacities range from 15 to 20 units, and the dashed
red circled nodes are assumed to be the public cloud nodes,
whose capacities are infinite. For each link, its capacity is
randomly picked in [3, 4] Gb/s and its delay takes value in
[10, 50] ms. It is assumed that there are in total 15 VNFs
whose capacities vary from 5 to 10 units, and the node
processing time for each VNF varies from 50 to 150 ms [57].
We randomly generate 50 sets of |R| = 20, 40, 60, 80, 100
requests for requested both totally ordered SFC (the re-
quest set is denoted by Rt) and partially ordered SFC
(the request set denoted by Rp), separately. Rt and Rp are
uniformly distributed in each edge cloud. For each request
r(E, δ, F,D) ∈ Rt, δ is between 10 and 50 Mb/s, |F | is
between 5 and 10, and D is between 500 and 800 ms. The
traffic request setting is in line with [58], and reflects the
conventional application of e.g., Web Service, VoIP, etc. The
request r(E, δ, F,D) ∈ Rp is generated the same with the
request in Rt except that we set 4 segments of VNFs in
each requested partially ordered SFC (the requested VNFs
in Rp are identical with the ones in Rt for each request), and
therefore the number of VNFs in each segment is in [1, 3].

The solution of the LP from Eq. (13) provides a lower
bound of the optimal solution (denoted by OPT LB), so
we compare OPT LB and our proposed approximation al-
gorithm RRVA with the relevant (slightly modeified) SFC-
eMbedding APproach (MAP) [37] and two straightforward
heuristics as follows. We initialize i = 1.

10

1) SFC-MAP: For each request r(E, δ, F,D), suppose
that f0 is placed on r.E (also for the Greedy and
Random algorithm in below) as in segment m0. For
each totally ordered sub-SFC m of r, SFC-MAP first
constructs a multi-layer graph by creating |F | + 1
copies of the original graph. The inter-layer links are
created to connect the same node in different layers,
and the inter-layer nodes are created to represent
the possible places to host each VNF in each layer.
By assigning link delay weights, SFC-MAP runs
shortest path from the ingress node in layer 1 to
the egress node in layer |F | + 1. If the solution is
not found or the delay requirement is violated, a
penalty is imposed for each link weight. The above
procedure continues at most τ times, where we set
τ = 30 in our simulation.

2) Greedy Algorithm: For each request r(E, δ, F,D),
suppose that f0 is placed on r.E as in segment
m0. For each requested VNF f in segment mi,
Greedy algorithm first tries to place it on one of
the nodes where the VNF(s) in segment mi−1 is
hosted (denoted by the set Nfx). If this step fails,
Greedy algorithm places f on a node nfy with
sufficient capacity, such that the

minl∈pk (c(l)−b(l))
T (pk)

value is maximum among all the nodes E\{Nfx},
where minl∈pk(c(l) − b(l)) denotes the minimum
link residual capacity in path pk from nfy to each
node inNfx . Moreover, the sum of each path’s delay
and node processing delay for f together with the
delay of serving previous VNFs should be less than
D.

3) Random Algorithm: For each requested VNF f in
segment mi, Random algorithm first tries to place it
on one of the node(s) where the VNFs in segment
mi−1 are hosted (denoted by N ′fx). If this step fails,
it randomly chooses one node n′fy with sufficient
capacity such that there exists at least one path from
each node in N ′fx to n′fy whose accumulating delay
is less than D and the path bandwidth is no less
than δ. If succeeds, it randomly selects one satisfied
path from each node in N ′fx to n′fy .

For both Greedy and Random algorithms, the above proce-
dures continue by increasing i by 1 until all the requested
VNFs have been placed and associated paths have been
found without violating delay, node capacity and link capac-
ity constraints, otherwise the algorithms continue to serve
the next request using the same routine until all the requests
have been iterated.

6.2 Simulation Results

We first compare the algorithms in terms of Acceptance
Ratio (AR), which is defined as the number of accepted
requests divided by the total number of requests. Here,
if a request is accepted, it means that its specified total
flow traversing delay D is obeyed returned by the found
solution. From the simulations we found that the variance
of AR and maximum Link Load Ratio (LLR) for all the al-
gorithms is small. To not clutter the figures, we only present
the mean value of AR and Max. LLR in below. Moreover,

20 40 60 80 100
Number of requests

0.7

0.75

0.8

0.85

0.9

A
cc

ep
ta

nc
e

R
at

io
 (

A
R

) RRVA
SFC-MAP
Greedy
Random

(a) USANet

20 40 60 80 100
Number of requests

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ep
ta

nc
e

R
at

io
 (

A
R

)

RRVA
SFC-MAP
Greedy
Random

(b) GÉANT

Fig. 6: Acceptance Ratio for the totally ordered SFC.

20 40 60 80 100
Number of requests

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ep
ta

nc
e

R
at

io
 (

A
R

) RRVA
SFC-MAP
Greedy
Random

(a) USANet

20 40 60 80 100
Number of requests

0.6

0.7

0.8

0.9

1

A
cc

ep
ta

nc
e

R
at

io
 (

A
R

)

RRVA
SFC-MAP
Greedy
Random

(b) GÉANT

Fig. 7: Acceptance Ratio for the partially ordered SFC.

since Opt LB only returns the fractional solutions, we do
not know the feasible integer solutions corresponding to
different requests and thus cannot calculate its returned
AR value. We therefore omit the AR values for Opt LB.
From Figs. 6 and 7 we can see that our approximation
algorithm can accept almost all the requests (above around
90%) for both totally ordered SFC and partially ordered SFC.
The AR values returned by Greedy algorithm and Random
algorithm are much lower than the AR value achieved by
RRVA. SFC-MAP has a better performance than Greedy
and Random, but its achieved AR value is still lower than
RRVA. For all the algorithms, their achieved AR value for
the partially ordered SFC request in Fig. 7 is higher than
the AR value for the partially ordered SFC request in Fig. 6.
The reason is that as we stated in Section 3.1, the traversing
delay in partially ordered SFC is lower than the delay in the
totally ordered SFC, which in turns satisfy more requests
regarding delay requirement. In particular, Fig. 8 illustrates
the average delay value returned from all the algorithms
among 100 requests. Accordingly, RRVA achieves the least

(a) USANet (b) GÉANT

Fig. 8: Average Delay of |R| = 100 requests.

11

20 40 60 80 100
Number of requests

0

0.2

0.4

0.6

0.8

1
M

ax
. L

in
k

L
oa

d
R

at
io

 (
L

L
R

)

OPT_LB
RRVA
SFC-MAP
Greedy
Random

(a) USANet

20 40 60 80 100
Number of requests

0

0.2

0.4

0.6

0.8

1

M
ax

. L
in

k
L

oa
d

R
at

io
 (

L
L

R
)

OPT_LB
RRVA
SFC-MAP
Greedy
Random

(b) GÉANT

Fig. 9: Maximum Link Load Ratio (LLR) for the totally
ordered SFC.

20 40 60 80 100
Number of requests

0

0.2

0.4

0.6

0.8

1

M
ax

. L
in

k
L

oa
d

R
at

io
 (

L
L

R
)

OPT_LB
RRVA
SFC-MAP
Greedy
Random

(a) USANet

20 40 60 80 100
Number of requests

0

0.2

0.4

0.6

0.8

1

M
ax

. L
in

k
L

oa
d

R
at

io
 (

L
L

R
)

OPT_LB
RRVA
SFC-MAP
Greedy
Random

(b) GÉANT

Fig. 10: Maximum Link Load Ratio (LLR) for the partially
ordered SFC.

average delay, followed SFC-MAP and Greedy, and the
Random has the largest average delay.

Next, we evaluate the maximum Link Load Ratio (LLR)
of all the algorithms. Figs. 9 and 10 show the Max. LLR value
for all the algorithms. We find that Opt LB achieves the
lowest Max. LLR value, and the approximation algorithm
achieves a very close performance with OPT LB. SFC-MAP
performs ranks the third regarding the performance of Max.
LLR value. Random algorithm performs poorly by having
the highest Max. LLR value because of its randomness in
choosing placed node and paths regardless of link residual
bandwidth. For all the algorithms, we found that their
achieved Max. LLR value for the partially ordered SFC
request in Fig. 10 is larger than the Max. LLR value for
the partially ordered SFC request in Fig. 9. This is because
more paths need to be established in the partially ordered
SFC, and this will consume more bandwidth which results
in larger Max. LLR.

After that, we verify the performances of the algorithms
when different K (number of paths between node pairs) is
set. As stated above, we omit the AR values for OPT LB. For
simplicity we only present the results when |R| = 40. We see
that when K increases from 1 to 10, the AR value increases
for all the algorithms except for SFC-MAP in Figs. 11 and 12,
and the Max. LLR value decreases for all the algorithms in
Figs. 13 and 14. But this trend does not change from 10 to 20
for both AR and Max. LLR, which implies thatK = 10 paths
are enough to guarantee QoS (e.g., delay). This is because
SFC-MAP only applies shortest path algorithm to find route
between VNF pair and therefore the number of paths does
not affect its performance.

Finally, Fig. 15 presents the total running time of all the

(a) USANet (b) GÉANT

Fig. 11: Acceptance Ratio for K paths and totally ordered
SFC (|R| = 40).

(a) USANet (b) GÉANT

Fig. 12: Acceptance Ratio for K paths and partially ordered
SFC (|R| = 40).

(a) USANet (b) GÉANT

Fig. 13: Maximum Link Load Ratio (LLR) for K paths and
totally ordered SFC (|R| = 40).

(a) USANet (b) GÉANT

Fig. 14: Maximum Link Load Ratio (LLR) for K paths and
partially ordered SFC (|R| = 40).

algorithms (in log scale) for |R| = 40, where the confidence
interval is set to 95%. We see that the confidence intervals

12

(a) USANet (b) GÉANT

Fig. 15: Total Running Time for |R| = 40 requests (95 percent
confidence interval).

of all the algorithms are not very visible6, which indicates
that the variances are also very small. We see that the
OPT LB has similar running time with RRVA since their
time complexities are dominated by the LP, but both of them
are higher than SFC-MAP and two other heuristics. Never-
theless, it is still acceptable since RRVA can achieve a close-
to-optimal performance as shown in Figs 6-10. SFC-MAP
has much higher running time than Greedy and Random
heuristic due to its increased problem size (|F | + 1 times
nodes and links) and maximum iteration times. Another
observation is that when |R| = 1, we found our proposed
approximation algorithm can return the solution in less
than several seconds (We omit the figure for brevity). In
practice, in many cases the traffic requests can be known or
predicted [59] in advance, therefore the service provider can
apply the proposed approximation algorithm to calculate
the solutions in an offline fashion (in acceptably short time
as implied in Fig. 15) for the (delay-sensitive) incoming
traffic requests. In addition, our proposed approximation
algorithm can also be applied only periodically or as com-
plementary solution for existing methods. Moreover, for
the same algorithm, we found that its running time for
the totally ordered SFC is lower than the value for the
partially ordered SFC. This can be explained that since the
partially ordered SFC consists of one or more totally ordered
sub-SFC, then there are more data input or constraints in
the OPT LB and RRVA, which results in higher running
time. Similarly, Greedy and Random needs to establish
more paths for VNF pairs in different segments, which also
consumes more time.

7 CONCLUSION

In this paper, we have studied the Delay-aware VNF Place-
ment and Routing (DVPR) problem in edge clouds, which is
to place each end user’s requested VNFs on network nodes
and find routes among each adjacent VNF pair such that
the maximum link load ratio λ is minimized and the total
traversing delay is no greater than the specified value. We
have considered this problem for both the totally ordered
SFC and partially ordered SFC. We have proved that the
DVPR problem is NP-hard, even for the special case when
only one VNF is requested. We subsequently propose a

6. Fig. 15 is log-scale that additionally contributes to the confidence
interval visibility.

randomized rounding approximation algorithm to solve it.
Simulation results reveal that the proposed randomized
rounding approximation algorithm outperforms three other
heuristics and achieves close-to-optimal performances in
terms of acceptance ratio and maximum link load ratio.
In practice, the proposed approach can provide the service
provider with the VNF placement and routing solutions
for end users’ requests such that each user’s NFV delay
requirement is satisfied while the maximum link load ratio
is minimized. By minimizing the maximum link load ratio,
the actual network flow is evenly distributed across the
network, and more future requests can be accommodated
since we try our best to reduce the network bottleneck.
In our future work, we plan to implement our proposed
algorithm in real testbeds or simulators and extend our
work to further optimize network management and control
related metric such as cross traffic management and net-
work control overhead. Another improvement is to further
shorten the running time of RRVA by e.g., reducing the
feasible LP region [60].

ACKNOWLEDGMENTS

The work of Song Yang is partially supported by the Na-
tional Natural Science Foundation of China (NSFC, No.
61802018) and Beijing Institute of Technology Research Fund
Program for Young Scholars. The work of Fan Li is par-
tially supported by the NSFC (No. 61772077, 61370192),
and the Beijing Natural Science Foundation (No. 4192051).
The work of Xu Chen is partially supported by the NSFC
(No. U1711265, No. 61972432) and the Program for Guang-
dong Introducing Innovative and Enterpreneurial Teams
(No. 2017ZT07X355). The work of Xiaoming Fu is partially
supported by EU FP7 CleanSky ITN (No. 607584) and
H2020 RISE COSAFE (No. 824019) projects. Song Yang is
the corresponding author.

APPENDIX A
USER DELAY VIOLATING FACTOR

Proof: Similar to the proof of theorem 4, we have the
following definition:

Definition 4. For each request r ∈ R, B ∈ Br, fi, fj ∈ B:

wrfi,fj =

 T (pk) + Φ
fi
u +Φ

fj
v

2 with probability
∑

pk∈Pu,v
Ỹ r,i,ju,v,k

0 otherwise

Since wrf0,f1 , wrf1,f2 , . . . are mutually independent ac-
cording to their definition, the expected delay for r follows:

E

 ∑
fi,fj∈B

wr
fi,fj

 =
∑

fi,fj∈B

E[wr
fi,fj]

=
∑

fi,fj∈B

 ∑
pk∈Pu,v

Ỹ r,i,j
u,v,k · (T (pk) +

Φfi
u + Φ

fj
v

2
))

 ≤ D (25)

According to the definition of α in Eq. (15) it holds that

0 ≤
wrfi,fj

·α
D ≤ 1. By dividing Eq. (25) with D

α on both sides
we have:

µD = E

 ∑
fi,fj∈B

wrfi,fj · α
D

 ≤ α (26)

13

In a similar way as proved from Eqs. (17) to (21), using
α
µD
≥ 1 (Eq. (26)) and applying Theorem 2 for α

µD

wrfi,fj
·α

D
whose expectation of their sum over fi, fj ∈ r is α, we
arrive at:

Pr

 ∑
fi,fj∈B

wr
fi,fj

· α
D

≥ (1 + θ)α

 ≤
Pr

 ∑
fi,fj∈B

α

µD

wr
fi,fj

· α
D

≥ (1 + θ)α

 ≤ e−θ2α2+θ (27)

By letting e
−θ2α
2+θ be less than ∆

|R||Bx| , we have:

Pr

 ∑
fi,fj∈B

wrfi,fj
D

≥ (1 + θ)

 ≤ e−θ2α2+θ ≤ ∆

|R||Bx|
(28)

where |Bx| is the maximum number of totally ordered sub-
SFCs among all the requests. Eq. (28) is satisfied for:

θ ≥
− log ∆

|R||Bx| +
√

log2 ∆
|R||Bx| − 8α log ∆

|R||Bx|

2α
(29)

By setting ∆ = 1
N2 , Eq. (28) becomes:

Pr

 ∑
fi,fj∈B

wrfi,fj
D

≥ (1 + θ)

 ≤ 1

|R||Bx|N2
(30)

Using Union Bound inequality in Theorem 3 for all the
requests, we arrive at:

Pr

 ⋃
r∈R,B∈Br

∑
fi,fj∈B

wr
fi,fj

D
≥ (1 + θ)

≤

∑
r∈R,B∈Br

Pr

 ∑
fi,fj∈B

wr
fi,fj

D
≥ (1 + θ)

≤ |R||Bx| ·

1

|R||Bx|N2
=

1

N2
,where θ ≥ log |R||Bx|+ 2 logN

α
+ 2

(31)

Eq. (31) indicates that for any request, the probability the
expected delay violates the specified delay value with a
factor of 1 + θ = log |R||Bx|+2 logN

α + 3 approaches 0 when
N → +∞.

APPENDIX B
NODE CAPACITY VIOLATING FACTOR

Proof:

Definition 5. For VNF f and each node n, the traffic load
βfl is defined as follows:

βfn =

{
η(f) with prob. maxr∈R:f∈r.F X̃

r,f
n ∀n ∈ N\C

0 otherwise

Since βf1n , βf2n , . . . are mutually independent according
to their definition, the expected load on node n is:

E

∑
f∈F

βfn

 =
∑
f∈F

E[βfn] =
∑
f∈F

max
r∈R:f∈r.F

X̃r,f
n · η(f) ≤ π(n)

∀n ∈ N\C (32)

According to the definition of α in Eq. (15) and Eq. (32), it
holds that 0 ≤ βfn·α

π(n) ≤ 1. By dividing Eq. (32) with π(n)
α on

both sides we have:

µπ = E

∑
f∈F

βfn · α
π(n)

 ≤ α (33)

In a similar way as proved from Eqs. (17) to (21), using
α
µπ
≥ 1 (Eq. (33)) and applying Theorem 2 for α

µπ

βfn·α
π(n) whose

expectation of their sum over f ∈ F is α, we arrive at:

Pr

∑
f∈F

βfn · α
π(n)

≥ (1 + ρ)α

 ≤ (34)

Pr

∑
f∈F

α

µπ

βfn · α
π(n)

≥ (1 + ρ)α

 ≤ e−ρ2α2+ρ

where ρ is an arbitrary positive value. Further, by letting

e
−ρ2α
2+ρ be less than ∆

N , we arrive at:

Pr

∑
f∈F

βfn
π(n)

≥ (1 + ρ)

 ≤ e−ρ2α2+ρ ≤ ∆

N
(35)

By solving Eq. (35), we have that

ρ ≥
− log ∆

N +
√

log2 ∆
N2 − 8α log ∆

N2

2α
(36)

By setting ∆ = 1
N2 , Eq. (35) becomes

Pr
[∑

f∈F
βfn·α
π(n) ≥ (1 + ρ)α

]
≤ 1

N3

As a result, for all the nodes, we have:

Pr

 ⋃
n∈N

∑
f∈F

βfn
π(n)

≥ (1 + ρ)

≤
∑
n∈N

Pr

∑
f∈F

βfn
π(n)

≥ (1 + ρ)

≤ N · 1

N3
=

1

N2
, where ρ ≥ 3 logN

α
+ 2 (37)

Therefore, Eq. (37) implies that for any node in the
network, the probability that its capacity will be violated
by a factor of 1 + ρ = 3 logN

α + 3 will approach 0 when N
grows +∞.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
Communications of the ACM, vol. 53, no. 6, p. 50, 2010.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing: A key technology towards 5G,” ETSI White paper,
2015.

[3] “ETSI Publishes First Specifications for Network Func-
tions Virtualisation,” http://www.etsi.org/news-events/news/
700-2013-10-etsi-publishes-first-nfv-specifications.

[4] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng et al., “Network functions
virtualisation introductory white paper,” in SDN and OpenFlow
World Congress, 2012.

14

[5] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci,
and T. Magedanz, “Service function chaining in next generation
networks: State of the art and research challenges,” IEEE Commu-
nications Magazine, vol. 55, no. 2, pp. 216–223, 2017.

[6] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms
for capacitated cloudlet placements,” IEEE Transactions on Parallel
and Distributed Systems, vol. 27, no. 10, pp. 2866–2880, Oct 2016.

[7] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud net-
work design optimization,” IEEE/ACM Transactions on Networking,
vol. 25, no. 3, pp. 1818–1831, June 2017.

[8] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang, “Selective offloading in mobile edge computing for the
green internet of things,” IEEE Network, vol. 32, no. 1, pp. 54–60,
2018.

[9] B. Yang, W. K. Chai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient NFV-enabled mobile edge-cloud for low latency mobile
applications,” IEEE Transactions on Network and Service Manage-
ment, vol. 15, no. 1, pp. 475–488, March 2018.

[10] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[11] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[12] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[13] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on
service function chaining,” Journal of Network and Computer Ap-
plications, vol. 75, pp. 138–155, 2016.

[14] B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey
of network function virtualization,” Computer Networks, 2018.

[15] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[16] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in IEEE 3rd International
Conference on Cloud Networking (CloudNet), 2014, pp. 7–13.

[17] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network in-
stance migration in network function virtualization architectures,”
IEEE/ACM Transactions on Networking, 2017.

[18] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

[19] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying
chains of virtual network functions: On the relation between link
and server usage,” in IEEE INFOCOM, 2016.

[20] L. Guo, J. Pang, and A. Walid, “Joint placement and routing of
network function chains in data centers,” in IEEE INFOCOM, 2018.

[21] A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, “A scalable
approach for service chain mapping with multiple sc instances in
a wide-area network,” IEEE journal on Selected Areas in Communi-
cations, vol. 36, no. 3, pp. 529–541, 2018.

[22] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service
function chain deployment and readjustment,” IEEE Transactions
on Network and Service Management, vol. 14, no. 3, pp. 543–553,
2017.

[23] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A.
Chan, “Optimal virtual network function placement in multi-
cloud service function chaining architecture,” Computer Commu-
nications, vol. 102, pp. 1–16, 2017.

[24] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad,
“Multi-cloud distribution of virtual functions and dynamic service
deployment: Open adn perspective,” in IEEE International Confer-
ence on Cloud Engineering, 2015, pp. 299–304.

[25] H. Goudarzi and M. Pedram, “Multi-dimensional sla-based re-
source allocation for multi-tier cloud computing systems,” in IEEE
4th International Conference on Cloud Computing, 2011, pp. 324–331.

[26] M. Su, L. Zhang, Y. Wu, K. Chen, and K. Li, “Systematic data
placement optimization in multi-cloud storage for complex re-
quirements.”

[27] F. L. Pires and B. Barán, “Multi-objective virtual machine place-
ment with service level agreement: A memetic algorithm ap-
proach,” in Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, 2013, pp. 203–210.

[28] K. Mills, J. Filliben, and C. Dabrowski, “Comparing vm-placement
algorithms for on-demand clouds,” in IEEE Third International
Conference on Cloud Computing Technology and Science, 2011, pp. 91–
98.

[29] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,” IEEE
Transactions on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[30] H. A. Alameddine, L. Qu, and C. Assi, “Scheduling service
function chains for ultra-low latency network services,” in 2017
13th International Conference on Network and Service Management
(CNSM), 2017, pp. 1–9.

[31] Z. Zhang, Z. Li, C. Wu, and C. Huang, “A scalable and distributed
approach for NFV service chain cost minimization,” in IEEE
ICDCS, 2017, pp. 2151–2156.

[32] Q. Li, Y. Jiang, P. Duan, M. Xu, and X. Xiao, “Quokka: Latency-
aware middlebox scheduling with dynamic resource allocation,”
Journal of Network and Computer Applications, vol. 78, pp. 253–266,
2017.

[33] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in ACM SIGCOMM, 2017, pp. 43–56.

[34] N. Huin, B. Jaumard, and F. Giroire, “Optimal network service
chain provisioning,” IEEE/ACM Transactions on Networking, 2018.

[35] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, “Vir-
tual function placement for service chaining with partial orders
and anti-affinity rules,” Networks, vol. 71, no. 2, pp. 97–106, 2018.

[36] A. Dwaraki and T. Wolf, “Adaptive service-chain routing for
virtual network functions in software-defined networks,” in Pro-
ceedings of the 2016 Workshop on Hot Topics in Middleboxes and
Network Function Virtualization, ser. ACM HotMIddlebox, 2016, pp.
32–37.

[37] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement
in geo-distributed cloud system,” IEEE Transactions on Parallel and
Distributed Systems, 2018.

[38] S. Yang, F. Li, R. Yahyapour, and X. Fu, “Delay-sensitive and
availability-aware virtual network function scheduling for NFV,”
IEEE Transactions on Services Computing, 2019.

[39] I.-H. Hou, T. Zhao, S. Wang, and K. Chan, “Asymptotically opti-
mal algorithm for online reconfiguration of edge-clouds,” in ACM
MobiHoc, 2016, pp. 291–300.

[40] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-
efficient workload scheduling in cloud assisted mobile edge com-
puting,” in IEEE/ACM IWQoS, 2017, pp. 1–10.

[41] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-aware QoS routing
in software-defined IoT,” IEEE Transactions on Emerging Topics in
Computing, 2018.

[42] S. Bera, S. Misra, and A. Jamalipour, “Flowstat: Adaptive flow-rule
placement for per-flow statistics in SDN,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 3, pp. 530–539, 2019.

[43] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic,
latency-optimal vNF placement at the network edge,” in IEEE
INFOCOM, 2018.

[44] D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Net-
work function placement on virtualized cellular cores,” in IEEE
International Conference on Communication Systems and Networks
(COMSNETS), 2017, pp. 259–266.

[45] A. Gupta, M. Tomatore, B. Jaumard, and B. Mukherjee, “Virtual-
mobile-core placement for metro network,” in IEEE Conference on
Network Softwarization and Workshops (NetSoft), 2018, pp. 308–312.

[46] D. Bhamare, A. Erbad, R. Jain, M. Zolanvari, and M. Samaka,
“Efficient virtual network function placement strategies for cloud
radio access networks,” Computer Communications, vol. 127, pp.
50–60, 2018.

[47] M. Leconte, A. Destounis, and G. Paschos, “Traffic engineering
with precomputed pathbooks,” in IEEE INFOCOM, 2018.

[48] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic
aware placement of interdependent NFV middleboxes,” in IEEE
INFOCOM, 2017.

[49] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman & Co.,
1979.

[50] C.-L. Li, S. McCormick, and D. Simchi-Levi, “The complexity
of finding two disjoint paths with min-max objective function,”
Discrete Applied Mathematics, vol. 26, no. 1, pp. 105 – 115, 1990.

[51] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel, “Nonlinear
integer programming,” in 50 Years of Integer Programming 1958-
2008. Springer, 2010, pp. 561–618.

15

[52] K. M. Anstreicher, “Linear programming in o ([n3/ln n] l) oper-
ations,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 803–812,
1999.

[53] R. Tarjan, Course: Advanced Algorithm Design. Lecture: Chernoff,
Probability and Computing. Princeton University, 2009.

[54] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite
Expansions. Springer Netherlands, 1974.

[55] H. Xu, Z. Yu, X. Y. Li, L. Huang, C. Qian, and T. Jung, “Joint route
selection and update scheduling for low-latency update in SDNs,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3073–3087,
2017.

[56] S.-C. Lin, P. Wang, I. Akyildiz, and M. Luo, “Towards optimal net-
work planning for software-defined networks,” IEEE Transactions
on Mobile Computing, 2018.

[57] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in IEEE
4th International Conference on Cloud Networking (CloudNet), 2015,
pp. 255–260.

[58] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing
costs on service chain placement in network functions virtual-
ization,” in IEEE Conference on Network Function Virtualization and
Software Defined Network (NFV-SDN), 2015, pp. 191–197.

[59] I. Alawe, A. Ksentini, Y. Hadjadj-Aoul, and P. Bertin, “Improving
traffic forecasting for 5G core network scalability: A machine
learning approach,” IEEE Network, vol. 32, no. 6, pp. 42–49, 2018.

[60] R. J. Vanderbei, “Linear programming: Foundations and exten-
sions,” 2001.

Song Yang received the Ph.D. degree from Delft
University of Technology, The Netherlands, in
2015. From August 2015 to July 2017, he worked
as postdoc researcher for the EU FP7 Marie
Curie Actions CleanSky Project in Gesellschaft
für wissenschaftliche Datenverarbeitung mbH
Göttingen (GWDG), Göttingen, Germany. He is
currently an associate professor at School of
Computer Science and Technology in Beijing
Institute of Technology, China. His research in-
terests focus on data communication networks,

cloud/edge computing and network function virtualization.

Fan Li received the PhD degree in computer
science from the University of North Carolina
at Charlotte in 2008, MEng degree in electrical
engineering from the University of Delaware in
2004, MEng and BEng degrees in communi-
cations and information system from Huazhong
University of Science and Technology, China in
2001 and 1998, respectively. She is currently a
professor at School of Computer Science in Bei-
jing Institute of Technology, China. Her current
research focuses on wireless networks, ad hoc

and sensor networks, and mobile computing. Her papers won Best
Paper Awards from IEEE MASS (2013), IEEE IPCCC (2013), ACM
MobiHoc (2014), and Tsinghua Science and Technology (2015). She
is a member of IEEE and ACM.

Stojan Trajanovski received his PhD degree
(cum laude, 2014) from Delft University of Tech-
nology, The Netherlands and his master degree
in Advanced Computer Science (with distinction,
2011) from the University of Cambridge, United
Kingdom. He is currently a research scientist
in Philips Research in Eindhoven, The Nether-
lands. Before that, he spent some time as a post-
doctoral researcher at the University of Amster-
dam and at Delft University of Technology. He
successfully participated at international science

olympiads, winning a bronze medal at the International Mathematical
Olympiad (IMO) in 2003. His main research interests include network
science & complex networks, machine learning, game theory, and opti-
mization algorithms.

Xu Chen is a Full Professor with Sun Yat-sen
University, Guangzhou, China, and the vice di-
rector of National and Local Joint Engineering
Laboratory of Digital Home Interactive Applica-
tions. He received the Ph.D. degree in infor-
mation engineering from the Chinese Univer-
sity of Hong Kong in 2012, and worked as
a Postdoctoral Research Associate at Arizona
State University, Tempe, USA from 2012 to 2014,
and a Humboldt Scholar Fellow at Institute of
Computer Science of University of Goettingen,

Germany from 2014 to 2016. He received the prestigious Humboldt
research fellowship awarded by Alexander von Humboldt Founda-
tion of Germany, 2014 Hong Kong Young Scientist Runner-up Award,
2017 IEEE Communication Society Asia-Pacific Outstanding Young Re-
searcher Award, 2017 IEEE ComSoc Young Professional Best Paper
Award, Honorable Mention Award of 2010 IEEE international conference
on Intelligence and Security Informatics (ISI), Best Paper Runner-up
Award of 2014 IEEE International Conference on Computer Communi-
cations (INFOCOM), and Best Paper Award of 2017 IEEE Intranational
Conference on Communications (ICC). He is currently an Area Editor of
IEEE Open Journal of the Communications Society, an Associate Editor
of the IEEE Transactions on Wireless Communications, IEEE Internet of
Things Journal and IEEE Journal on Selected Areas in Communications
(JSAC) Series on Network Softwarization and Enablers.

Yu Wang is currently a Professor in the Depart-
ment of Computer and Information Sciences at
Temple University. Prior to joining Temple Uni-
versity, he was a Professor of Computer Sci-
ence at the University of North Carolina at Char-
lotte (UNC Charlotte). He holds a Ph.D. from
Illinois Institute of Technology, an MEng and a
BEng from Tsinghua University, all in Computer
Science. His research interest includes wireless
networks, smart sensing, and mobile computing.
His research has been continuously supported

by US National Science Foundation and US Department of Transporta-
tion. He has published over 200 papers in peer reviewed journals and
conferences, with four best paper awards. He has served as general
chair, program chair, program committee member, etc. for many in-
ternational conferences (such as IEEE IPCCC, ACM MobiHoc, IEEE
INFOCOM, IEEE GLOBECOM, IEEE ICC). He has served as Editorial
Board Member of several international journals, including IEEE Transac-
tions on Parallel and Distributed Systems. He is a recipient of Ralph E.
Powe Junior Faculty Enhancement Awards from Oak Ridge Associated
Universities (2006), Outstanding Faculty Research Award from College
of Computing and Informatics at UNC Charlotte (2008), and Fellow of
IEEE (2018). He is also a senior member of ACM and a member of
AAAS.

16

Xiaoming Fu received his Ph.D. in computer
science from Tsinghua University, Beijing, China
in 2000. He was then a research staff at the
Technical University Berlin until joining the Uni-
versity of Göttingen, Germany in 2002, where he
has been a professor in computer science and
heading the Computer Networks Group since
2007. He has spent research visits at universi-
ties of Cambridge, Uppsala, UPMC, Columbia,
UCLA, Tsinghua, Nanjing, Fudan, and PolyU
of Hong Kong. Prof. Fu’s research interests in-

clude network architectures, protocols, and applications. He is currently
an editorial board member of IEEE Communications Magazine, IEEE
Transactions on Network and Service Management, and Elsevier Com-
puter Communications, and has served on the organization or program
committees of leading conferences such as INFOCOM, ICNP, ICDCS,
MOBICOM, MOBIHOC, CoNEXT, ICN and COSN. He is an IEEE Senior
Member, an IEEE Communications Society Distinguished Lecturer, a
fellow of IET and member of the Academia Europaea.

