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Abstract—The unprecedented advancements in quantum
technology have opened new prospects for the widespread
adoption of quantum applications, placing new demands on
the information transmission capabilities of large-scale quan-
tum networks. Long-distance and stable entanglements are
deemed as the lifeline in quantum network communication.
However, some weaknesses, e.g., quantum decoherence, scarce
quantum memory, and uneven-quality entanglement, of the
quantum entanglement hinder the development. In this paper,
we propose Sophon, an online transmission framework for
quantum networks, which utilizes high-dimensional entangle-
ments to concurrently transmit multi-qubit data to satisfy the
transmission requirements of the real-time request set. We first
model the quantum network with multi-qubit entanglement
represented by W quantum state and then formulate the En-
tanglement Routing and Qubit Provisioning (ERQP) problem
as a global-local optimization process. To solve the ERQP
problem, we distributedly regard each network node as an RL
agent for resource provisioning and extend the step-updating
of the Markov Decision Process by introducing a centralized
controller for entanglement route selection to optimize local and
global objectives, respectively. Extensive simulations demon-
strate, on the self-made simulation platform, Sophon achieves
a 21.89% − 66.52% decrease in the communication cost, and
is more robust on different scales of the network topology and
the request set than the baselines.

Index Terms—Quantum networks, multi-qubit entangle-
ment, multi-agent reinforcement learning, branch-and-bound
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I. INTRODUCTION

Benefiting from the inherent privacy protection and high-
speed transmission properties, the quantum mechanism is
revolutionizing the conventional communication paradigm
[1]. In light of the support around the world, the quantum
application has witnessed unprecedented advancements [2],
[3], such as Quantum Key Distribution [4], distributed quan-
tum computing [5], quantum nuclear magnetic resonance [6],
etc. As the carrier for quantum information transmission, the
quantum network promises to provide reliable transmission
for massive data to ensure seamless communication, thereby
facilitating the widespread adoption of these quantum appli-
cations. With the strong data-carrying and noise-resistance
abilities, the high-dimensional entanglement state is deemed
as a potential approach [7], [8].

In quantum networks, qubit transmission relies on quan-
tum entanglement, a medium-free communication channel
established between two quantum nodes. Long-distance End-
to-End (E2E) entanglements for responding to the quantum
request are crucial components in large-scale quantum net-
works. However, the quantum decoherence, caused by the
interaction noise between the quantum state and its surround-
ings [9], [10], brings more uncertainty to the entanglement
establishment. It gradually deteriorates the entanglement
quality and breaks the transmission connection, especially
in long-distance E2E entanglements. Moreover, the scarce
qubit memory of quantum nodes limits the establishment of
more entanglement links, which hinders the quantum net-
work from completing the transmission requirements of the
request set. Therefore, reasonably routing E2E entanglement
routes and efficiently provisioning qubit resources to relieve
the pressure of quantum decoherence to satisfy massive data
transmission requirements is an urgent issue in large-scale
quantum networks. In this paper, we call it an Entanglement
Routing and Qubit Provisioning (ERQP) problem.

Quantum network modeling is the first issue to be con-
sidered in solving the ERQP problem. Most of the existing
model maximizes the network throughput by establishing
E2E one-qubit entanglements as many as possible [11]–[15].
This kind of entanglement state merely transmits one qubit
of data in a one-time entanglement transmission. The one-
qubit entanglement state is susceptible to interference from
noise induced by quantum decoherence. Recently, a type of
multi-qubit entanglement brings a noticeable improvement in
the resistance to the noise [16]–[18]. It is generated by the
weighted summation of multiple qubit states between two
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Fig. 1: One-qubit and two-qubit entanglements.

quantum nodes, and proven to be more noise-resistance [16].
We provide an example to demonstrate this entanglement
scheme and its stronger correlations. As shown in Fig. 1,
one-qubit entanglement |φab⟩ has two pairs of Hilbert coor-
dinate bases ((|0⟩a, |1⟩a), (|0⟩b, |1⟩b)) and is represented by
a matrix with four coefficients. In contrast, the two-qubit
entanglement |φAB⟩ = |φa1a2

⟩ ⊗ |φb1b2⟩ has 4 pairs of
Hilbert coordinate bases and its coefficient matrix has 24

elements. Part of the representing coefficients is modified
when the entanglement state interferes with the decoherence
noise. A larger representing matrix is more noise-resistant
because more coefficients have better fault tolerance [16].
This high-dimensional multi-qubit entanglement scheme can
implement more efficient (quantity and reliability) data
transmission than the one-qubit entanglement. Therefore,
establishing E2E multi-qubit entanglements to satisfy trans-
mission requirements of massive requests is a valuable issue
in large-scale quantum networks.

The second issue is the optimization methodology. Most
of the previous studies optimize network utility by the cen-
tralized methods, such as extended Dijkstra [11], randomized
rounding [12], opportunistic method [19], and self-made
iteration [20]. Running these algorithms, with concurrent
iterations and one-shot solving in large-scale networks,
brings excessive communication expenditure caused by fre-
quent information aggregation. Some works adopt entirely
distributed methods to relieve the communication burden
and achieve local privacy guarantee, such as graph-based
distance routing [21], neighbor-based controlling [22]. These
local-view algorithms damage utility performance because of
the low input of valuable network information. There exists
an objective difference between centralized and distributed
control. The global objective serves quantum users in such
a way that the requests can be successfully and quickly
satisfied with the required data transmission, while the
local objective focuses on the node benefits, such as the
resource utilization ratio and energy consumption. Hence,
designing a flexible transmission framework to balance the
communication expenditure and the network performance
with the joint optimization of global and local objectives
is also an imperative issue in large-scale quantum networks.

In this paper, we propose an effective and flexible trans-
mission framework (Sophon) in quantum networks with
high-dimensional multi-qubit entanglement states. We resort
to a high-dimensional quantum state (W state) to first

formulate the multi-qubit quantum state and then quantum
network components containing E2E entanglements, state
decoherence, and data transmission process. Next, we de-
fine and model the ERQP problem as a joint optimization
problem to globally maximize the network throughput and
locally maximize the memory usage while constrained by
manifold characteristics on the entanglement quality, the
response delay, and the node capacity. Furthermore, we
propose Sophon, which runs a centralized control platform in
the quantum cloud and equips the Reinforcement Learning
(RL) agent on each network node. The distributed RL
agent takes the local information to learn the flexible qubit
resource provisioning policies while maximizing memory
usage. The centralized controller aims to optimize the global
throughput by selecting reasonable E2E entanglement routes
for each request using an improved link-level branch-and-
bound algorithm. During the interaction process, the global
network implements one-time entanglement transmission af-
ter obtaining the distributed resource provisioning decisions
and the centralized route selection results. After that, the
whole network environment completes a one-time global
state transition. To the best of our knowledge, this is the
first work studying qubit transmission based on the multi-
qubit E2E entanglement. Our contributions are as follows:

• We use W quantum state to formulate multi-qubit
entanglement and quantum network components, based
on which we formulate the ERQP problem as a global-
local optimization problem with manifold constraints.

• We propose a data transmission framework, Sophon,
which adopts distributed, RL-based resource provision
agents in each network node, cooperating with a cen-
tralized E2E entanglement routing solving by a link-
level branch-and-bound algorithm.

• Extensive simulations reveal that (i) Sophon achieves a
41.1%−69.5% decrease in the communication cost and
a 87.6%−98.8% decrease in the algorithm running time
compared to the baselines and (ii) Sophon is robust and
flexible on the heterogeneous requests, various topology
scales, and different constraint thresholds.

The rest of this paper is organized as follows. Section II
demonstrates the existing works, and Section III introduces
some preliminaries of quantum networks. We present the
network model and problem definition in Section IV, and
elaborate Sophon in Section V. The evaluation results are
shown and analyzed in Section VI. We conclude this work
in Section VII.

II. RELATED WORK

A. One-Qubit Entanglement Transmission

The entanglement distribution quantum network is first
introduced with one-qubit entanglements that can transmit
only one qubit of quantum information. Gyongyosi et al.
[21] embed the entangled overlay network with the multi-
level (different hop number) and probabilistic entangled
links onto a simple graph-based network and then reduce
the decentralized routing of finding the shortest route to a



statistical estimation problem. It faces a high complexity
in responding to multiple SD pairs due to the only-one-
request limitation. Shi et al. [11] respectively propose a
pre-computed route selection and recovery assisted by the
cost-ascending queue with the greedy-resource scheme, and
a runtime extended Dijkstra’s algorithm to greedily find
the best one among all SD pairs’ routes according to the
cost metric. It doesn’t consider the fairness of SD pairs
and lacks the feasibility of link recovery. To remedy the
weakness of [11], Zhao et al. [12], [15] merge the route re-
covery and E2E entanglement establishment to maximize the
throughput of multiple SD pairs by firstly determining the
optimal candidate entanglement links, link-based selecting
the optimal route, and then, repairing failed routes using the
remaining qualified links. Different from the fixed number of
SD pairs in [12], [15], Zeng et al. [23] sequentially maximize
the number of user pairs and the network throughput to
make full use of network resources. The above works
all regard the uncertainty of entanglement establishment
caused by quantum decoherence as the homogeneous [21]
or heterogeneous [11], [12], [15], [23] probabilities of en-
tanglement links. Zhao et al. [24] select the primary links
to maximize the throughput for multiple SD pairs, which
provides a progressive fidelity qualification. Different from
[24] that quantifies fidelity by using the bit flip error, Gu et
al. [25] utilize the isotropic error model to formulate the
entanglement quality. And, they consider maximizing the
throughput with buffered entanglement reserve, the same
as the overlay network applied by Pouryousef et al. [26].
Inspired by these works, our quantum network responds to
multiple and flexible SD pairs in fairness, quantifies the
entanglement quality with fidelity, and introduces the link-
level buffering capability of network nodes.

B. Multi-Qubit Entanglement Transmission

The multi-qubit entanglement can concurrently transmit
multiple qubit information between two network nodes,
including two schemes of the multiple nodes connected
as a line and as a graph topology. Zhong et al. [27]
experimentally report a three-qubit entanglement in a quan-
tum network comprising two superconducting nodes with
the deterministic entanglement fidelity, which verifies the
feasibility of multi-qubit entanglement between two network
nodes. Mannalath et al. [28] extract maximally entangled
GHZ states from a repeater line generated by finding the
shortest route with the weights of the smallest combined
neighborhood in the quantum network, where each network
node contains only one qubit. The above two works belong
to the node-line scheme, where each multi-qubit entangle-
ment transmits multiple qubit information. BEGHELLI et
al. [29] try to establish a long-distance high-dimensional
entanglement state among multiple network nodes through
entanglement fusion and BSM operations, which is utilized
in the collaborative computing and encryption of multiple
quantum parties. Similar to [29] that establishes GHZ state
among several network nodes, Zeng et al. [30] model a
multi-user entanglement as a graph-based degree-constrained

Alice Bob

register 1

register 2 3-qubit

5-qubit
A

B

1
AB

2
AB

qubit emitter state transition entanglement

physical link

Fig. 2: Two multi-qubit entanglements established between
two network nodes.

minimum spanning tree problem to implement a more pow-
erful quantum processor. These two works are the graph
scheme, which transmits only one qubit via an entangle-
ment route due to being inherently based on the one-qubit
entanglement between any two nodes. Here, we explore
the node-line scheme where the multi-qubit entanglement
is established by the weighted summation of multiple one-
qubit entanglements and formulated as the high-dimensional
W state between two network nodes [16], [17].

III. PRELIMINARIES

A. Multi-Qubit Entanglement

The d-qubit entanglement can be constructed by d-
dimensional entanglement gate (Clifford gate) group, for-
mulating the entanglement into a weighted summation of
one-qubit entanglement [18]. Based on [18], [17] introduces
the quantum register to emit an array of qubits once, and
establishes a multi-qubit entanglement formulated in the W
state. For example, 3-dimensional W state is denoted as
|W ⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩).

The quantum register is a container accommodating an
array of qubits and emitters in a quantum node. Each emitter
emits a qubit particle once a time. The quantum state of the
d-qubit system in a quantum register is described as:

|φ⟩ =
d−1
⊗
j=0

(
√
1− p|0⟩j +

√
p|1⟩j) |0/⟩ , (1)

where p is the probability of each qubit measured in state
|1⟩. ⊗ denotes the state transition of dimension expansion.
|0/⟩ denotes the vacuum of the electromagnetic field. When d
emitters in a register concurrently emit d entangled particles,
a high-dimensional entanglement state is attempted to be
successfully established in the receiver. This step is repeated
for f times until successful. The established state is:

|ψ⟩fd =
1√
d

d−1∑
j=0

|ej⟩ |j⟩⊗f (2)

where f is the number of attempts, i.e., the emission times
of a group of laser emitters.

As shown in Fig. 2, Alice has registers 1 and 2, re-
spectively, accommodating 5 and 3 qubit emitters. After
each register completes the particle emission, two multi-
qubit entanglement states

∣∣ψ1
AB

〉
and

∣∣ψ2
AB

〉
are established.

Bob receives 5 entangled particles in
∣∣ψ1

AB

〉
and 3 ones



in
∣∣ψ2

AB

〉
. As shown in Fig. 3, Alice’s register 2 emits

entangled particles with f = 4-time attempts, during each of
which 3 entangled particles are attempted to be emitted to
Bob. There establishes a 3-qubit entanglement represented

by the W state as
∣∣ψ2

AB

〉4
3
= 1√

3

2∑
j=0

|ej⟩ |j⟩⊗4. This link-

level entanglement
∣∣ψ2

AB

〉4
3

can successfully transmit 3-qubit
information from Alice to Bob once time.

Using the W state with the weighted overlapping of d-
qubit entanglements to write the d-dimensional state transi-
tion ⊗ in Eq. (2):

|ψ⟩fd =
√
fd

f−1∑
i=0

d−1∑
j=0

|ei⟩ |j⟩. (3)

and introducing Eq. (1), i.e., |ψ⟩ = |φ⟩, we can obtain:

|ψ⟩fd =
√
fdp(1− p)f ·d−1

f−1∑
i=0

d−1∑
j=0

|eij⟩, (4)

where |eij⟩ is the unit state, the (i · d+ j)th qubit is in state
|1⟩ and all others are in state |0⟩.

B. Quantum Decoherence

We focus on the collapsed decoherence model [9], [10],
which sheds light on the behavior of quantum systems
in realistic scenarios. It occurs when the masses of qubit
particles in registers significantly exceed those of scattered
surrounding particles. Considering a quantum entangled state
|ψ⟩, subjected to collapsed decoherence, it evolves with an
exponential item as:

|ψ⟩ = |ψ⟩ e−τ(∆x)2 , (5)

where the measured scattering constant τ can characterize
the physical properties of the system-surrounding interac-
tion. ∆x is the physical distance between two entangled
particles, within which the system maintains coherence.
Jointly considering Eq. (4) and Eq. (5), we obtain the
collapsed decoherence of d-dimensional qubit entanglement:

|ψ⟩fd =

f−1∑
i=0

d−1∑
j=0

√
fdp(1− p)f ·d−1e−τ(∆x)2 |eij⟩. (6)

Additionally, fidelity, valued in (0, 1), is an index to
evaluate the entanglement quality. We utilize the Schu-
macher fidelity [31], which extends the state similarity to
the maximal transition probability. Decoherence weakens
the entanglement quality while decreasing the fidelity. The
Schumacher fidelity of multi-qubit entanglement |ψ⟩fd under
the collapse decoherence [9], [10] is denoted as:

F (|ψ⟩fd) =
√
fdp(1− p)f ·d−1e−τ(∆x)2 . (7)

which indicates that the emission times f and the transmis-
sion dimension d contribute equally to F (|ψ⟩fd).

When the entanglement state cannot be quantified in the
practical scenario, the physical system guarantees the suc-
cessful entanglement establishment through f -times emis-
sion attempts. Li et al. [32] design a hardware system for

register 2
3-qubit24 42

3
0

1

3
AB j

j

e j 



 

f

3-qubit

f=4
f1

f4

f1

f4register 2

f=4

d

=

3

d

=

3

Fig. 3: A multi-qubit entanglement established by the laser
emitter group and represented in W state.

entanglement quantification, which can successfully estab-
lish the entanglement state only through 2-times emission
attempts. Here, we employ a fidelity metric derived from
the collapse decoherence model to assess high-dimensional
entanglement quality, rather than relying on system-level
statistical methods (emission attempts). We set f = 1, i.e., a
single emission event per emitter. This simplification allows
the analysis to focus exclusively on how the entanglement
quality is determined by its dimensionality.

C. Quantum Network Components

Quantum Requests: The quantum request originates from
either classical or quantum applications, requiring a certain
amount of qubit information transmitted via a quantum
network. It contains a source node to send data and a
destination node to receive data.
Quantum Repeaters: The quantum repeater is required to for-
ward the quantum information along the E2E entanglement
route. Each quantum repeater should provide two types of
resources: storage resources and computing resources.
Quantum Memory: Each network node’s memory is required
to temporarily maintain the multi-qubit information for a
time-bin interval in one-time transmission. The occupied
memory is released until the request is satisfied with its
transmission requirement.
Quantum Cloud Platform: It is a cluster of many high-
performance quantum computing processors. A centralized
controller runs on a common quantum server employed in
the quantum cloud platform. It has a global view of the real-
time network environment with the comprehensive authority
to manage network resources.

IV. QUANTUM NETWORK MODEL

A. Motivating Example

Before formulating the problem, we develop an example
of the ERQP problem to demonstrate the innovation of
our transmission framework. Fig. 4(a) shows the example
network topology consisting of 8 quantum nodes and 10
edges with their physical length. The node memories and the
request set are also provided in the chart. Each request has
the top two shortest candidate routes generated between its
source and destination nodes. The request set has four types
of data requirements: homogeneous requirements (10 and
100 qubits), and non-homogeneous requirements (a given
requirement set and a sampled requirement set).
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Fig. 4: A motivation example on three transmission schemes (OBO, All in, AMOR) with different patterns of data
requirements data1, data2, data3, whose values are taken from Fig. 4(a). data4 is sampled from a Gaussian distribution
(55, 1) and clipped to the range [10, 100]. The result in Fig. 4(e) is the average of 10 runs.

TABLE I: Example problem models

Framework Variables Problem models

OBO [11],
[13], [33] χr,t

k

obj : max
∑

k∈Pr

χr,t
k , ∀r ∈ R

s.t. :
∑
r∈R

∑
k∈Pr

Hr
k,nχ

r,t
k ≤ Cn

All in [12],
[24] χr,t

k

obj : max
∑
r∈R

∑
k∈Pr

χr,t
k

s.t. :
∑
r∈R

∑
k∈Pr

Hr
k,nχ

r,t
k ≤ Cn

AMOR [14],
[23] Xr,t

k , Y r,t
k

obj : max
∑
r∈R

∑
k∈Pr

Xr,t
k

s.t. :
∑
r∈R

∑
k∈Pr

Hr
k,nX

r,t
k ≤ Cn∑

k∈Pr

Y r,t
k ≤ 1, ∀r ∈ R

We regard one-time entanglement transmission as a net-
work time slot where all network resources are considered
in the provisioning decision for a request set. Based on this,
we explore three representative transmission schemes: One-
By-One (OBO) where the overall network resource serves
only one request in one-time transmission, All in, where
all requests can be simultaneously responded to in the net-
work, and each request is served by multiple entanglement
routes with the multi-qubit transmission, At Most One Route
(AMOR) where all requests can be simultaneously responded
to in the network, and each request is guaranteed to be
responded through at most one entanglement route with
the multi-qubit transmission. In these schemes, when one-
time transmission cannot complete the data transmission
requirement of the request set, the residual transmission tasks
are executed after the previously used resources are released.
All in is applied in [12], [24], allowing one entanglement
route to transmit merely two rather than multiple qubit
information. AMOR is proposed in [14], [23] regarding
an entanglement route as a whole that transmits the same
number of qubits in all entanglement links through this route.
Compared to All in, AMOR guarantees the transmission
fairness for each request.

Table I lists the problem models of these three transmis-
sion frameworks. χr,t

k are integer variables denoting how
many two-qubit E2E entanglements are established along
the k-th route of request r in the t-th transmission. Hr

k,n

are binary constants to represent whether request r’s k-
th route traverses node n (1) or not (0). Xr,t

k are integer
variables depicting the number of qubits that request r’s
k-th route can transmit in the t-th transmission. Y r,t

k are
binary variables, denoting whether request r selects the k-th
route to establish E2E entanglement in the t-th transmis-
sion. Y r,t

k can be deduced from Xr,t
k . All models aim to

maximize the total transmission data volume while being
limited by node memories. The optimal solutions to these
problems are obtained by using the global traversal. We set
χr,t
k ∈ {0, 1, 2},Xr,t

k ∈ {0, 1, 2}. Y r,t
k = 1 if Xr,t

k > 0,
otherwise Y r,t

k = 0.
Shown in Fig. 4, three transmission schemes respond to

data1, data2, data3 transmission requirements (shown in
Fig. 4(a)), respectively. Each scheme is completed with a
different number of transmissions. It is evident that OBO
requires an increasing number of transmission times as re-
quests increase, especially with exponential increases when
the data requirements are non-homogeneous. This is because
the data requirements of partial requests cannot be completed
in one-time transmission, while others must wait. Network
resources cannot be fully utilized in one-time transmission,
even as the number of requests or the data volume re-
quirement continues to increase. All in and AMOR both
perform better than OBO when the network resources are not
enough to support all transmission tasks. With the network
resources becoming severely scarce, AMOR maintains its
performance advantage under homogeneous data demand
conditions in Fig. 4(b) and Fig. 4(c). With non-homogeneous
data requirements, AMOR still performs better with fewer
transmission times when the number of requests increases,
as shown in Fig. 4(d). It is because AMOR is more sensitive
to resource contention than All in and AMOR ensures the
possibility that each request can be responded to fairly in
one-time transmission, which brings a long-term benefit.

B. Problem Definition

In the given example, we assume the k-th candidate route
of request r can transmit Xr,t

k qubits in the t-th transmission,
i.e., each node in the route Pk

r allocates the same Xr,t
k qubits

for r. In the ERQP problem, local quantum node n possesses
the decision-making ability to allocate Xr,t

n qubit resources



TABLE II: Notations

Parameters Descriptions

G(N , E) The quantum network topology

R The given request set

r(sr, dr, Vr)
Request r with its node pair < sr, dr > and the data
transmission requirement Vr

Pr The given physical routes of request r

Fthr The fidelity threshold for all requests

Dthr The delay threshold for each E2E entanglement

Cm The capacity of node n

Hr
k,n

A boolean array to denote whether request r’s the
kth route traverses node n (1) or not (0)

Mr,t
n

The number of resources that stores request r’s
qubit information on node n in the tth transmission

Φr,t
n,n+1,k

The transmitted data volume of entanglement
link ln,n+1 on the kth route of request r

Variables Descriptions

Y r,t
k

Boolean variable and it is 1 if the physical
route Pk is selected to generate the tth E2E
entanglement for request r

Xr,t
n

Integer variable, which indicates how many qubits
node n allocates for request r in the tth transmission

for r and considers the local optimization objective. The
transmission data volumes of request r on each entanglement
link should be flexible and vary with the node capacity.
Therefore, we extend the AMOR scheme on the link-level
entanglement link by depicting the qubit transmission on
each entanglement link. The link-level AMOR is more fine-
grained in the routing and resource provisioning decisions
compared to the route-level AMOR [14], [23]. We first
formulate some link-level transmission components related
to the variables. Table II provides the notations.

1) Link-Level Entanglement Transmission: We extend
AMOR by using a link-level data transmission to adapt each
network node’s local decision-making ability. A network
node can temporarily maintain qubit resources to wait to
be transmitted to the next node. In the t-th transmission,
node n maintains Mr,t

n qubit resources for request r and
pre-allocates Xr,t

n qubit resources for the k-th route of r to
be prepared for transmitting. The transmitting data volume
of the entanglement link ln,n+1 on route Pk

r is denoted by:

Φr,t
n,n+1,k = min(Xr,t

n ,Mr,t
n +Φr,t

n−1,n,k). (8)

where n− 1 and n+1 are the predecessor and successor of
node n. The accumulated data volume of request r on node
dr in the t-th transmission is:

Φr,t
∗ =Mr,t

dr
+Φr,t

dr−1,dr,k
. (9)

Once the data requirement of request r is successfully
satisfied, i.e., Φr,t

∗ ≥ Vr, the occupied qubit resources
in all network nodes are released to prepare for the data
transmission of other requests.

2) E2E Entanglement Fidelity: The E2E entanglement
fidelity can be obtained by the product of multi-qubit en-

tanglement links on the E2E entanglement route [24]. The
E2E fidelity of route P k,t

r is computed by:

FPk,t
r

=
∏

n∈Pk,t
r

F (
∣∣ψn(n+1)

〉f
d
)

=
∏

n∈Pk,t
r

√
Φr,t

n,n+1,kp(1− p)Φ
r,t
n,n+1,k−1.

(10)

Combined with the property of quantum decoherence in
Eq. (7), Eq. (10) is transformed as:

FP r,t
k

=
∏

n∈P r,t
k

√
Φr,t

n,n+1,kp(1− p)Φ
r,t
n,n+1,k−1P k

r (e), (11)

where P k
r (e) = e−τ |P r,t

k |2 . We deduce from Eq. (11) that
the transmitting data volume on entanglement links and the
length of the E2E entanglement route are critical factors to
quantify E2E entanglements indicated by E2E fidelity.

3) Transmission Delay: The transmission delay of request
r in the t-th transmission is denoted as:

Dt
r =

∑
k∈Pr

∑
i,j∈V

Y r,t
k Lr

k +Dt−1
r , (12)

where Dt−1
r is the previously accumulated delay until the t−

1-th transmission, recorded during the transmission process.
4) Problem Definition: Suppose there is a given undi-

rected graph to represent a quantum network denoted by
G(N , E) and a set of requests R. N and E are respectively
node set and edge set. Quantum node n ∈ N has its
memory capacity of Cn. Request r ∈ R is characterized
by r =< sr, dr, Vr >. < sr, dr >, sr, dr ∈ N denotes
the source-destination node pair. Vr is the data transmission
requirement that necessitates being served by the quantum
network. Here, we assume the route set Pr between sr and
dr node pair is known 1 in advance. Dthr is the delay
threshold for each request, and Fthr is the fidelity threshold
for E2E entanglements, both of which are determined by the
properties of quantum applications. We define the Entangle-
ment Routing and Qubit Provisioning (ERQP) problem with
high-dimensional entanglement transmission:

Definition 1. Given a network G(N , E) and a set of requests
R, the ERQP problem2, involving routing E2E multi-qubit
entanglements and allocating qubit resources for a request
set R, with the cooperative objectives of globally maximizing
the transmitting data volume while locally maximizing the
network node’s resource utilization, such that:

• The fidelity and delay of each E2E entanglement are no
less than the given thresholds Fthr and Dthr in one-
time entanglement transmission.

• The total resource usage for all requests must not
exceed the memory capacity in any quantum node.

1In the given route set P , some routes connecting the node pair < s, d >
are sorted in order by physical length.

2The ERQP problem is essentially a network resource allocation problem,
while it has the specific characteristic of quantum mechanism (fidelity
and the classical communication delay after being measured). Also, its
objectives can be changed according to the requirements of quantum
applications due to the joint optimization setup in our proposed framework.
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Fig. 5: Sophon’s working framework.

V. SOPHON DESIGN

A. Overview
Sophon is an online link-level transmission framework

for quantum networks, which uses distributed RL agents
to dynamically adjust qubit resource provisioning based on
the real-time data transmission requirements computed by
the centralized controller while balancing the global-local
optimization objectives. It is highly challenging to directly
solve the defined ERQP problem in Def. 1 because (1)
treating joint objectives as an integrated entity neglects their
individual characteristics, (2) the large number of variables
and constraints leads to an exponential increase in computing
complexity. Sophon decomposes the solving process into
three stages: provisioning, routing, and transmitting.

As shown in Fig. 5, each network node is equipped
with an RL agent. An RL agent’s one-time state transition
consists of three stages. In the provisioning stage, each RL
agent pre-allocates qubit resources for all requests based
on the local-view network information otn. In the routing
stage, Sophon uses the resource provisioning policies Xr,t

n

output by all distributed RL agents to compute the link-
level data transmission according to Eq. (8). According to
the edge weight parameters calculated based on the link-
level transmitting data volume, Sophon selects the optimal
candidate route to establish E2E entanglement to maximize
the total transmitting data volume on the centralized control
platform. The centralized controller outputs the selected
routes Y r,t

k and the determined provisioning policies Xr,t
n

for each request. In the transmitting stage, data transmission
occurs based on the known route and resource decisions.
The request set R is updated to release the satisfied requests
and insert new ones by comparing the required data Vr and
the real-time completed data volume χr,t

∗ in r’s destination
node dr. Each node’s memory is updated. The occupied

qubit resources of the satisfied requests are released to make
resources available for new requests. The quantum network
environment completes a global state transition from the t-th
to the (t+ 1)-th transmission. Each network node goes into
the provisioning stage of the next time slot. Sophon extends
the classical Markov interaction between RL agents and the
network environment by introducing the global E2E route
selection.

B. Provisioning Stage

In the provisioning stage, each network node aims to
cooperatively complete the transmission tasks with its neigh-
bors while sufficiently utilizing individual resources. Each
RL agent in the node inputs the local-observed network
information into the policy network to obtain actions and
compute the local reward. The policy network is trained by
the step-to-step accumulated interaction experience with the
network environment. The quantum network with all trained
agents self-adaptively transmits the qubit data to update the
request set. We take the Deep Q-learning Network (DQN)
as an example of RL algorithms 3 to learn the distributed
pre-provision policies. DQN contains the policy network,
which learns the mapping between the observations and the
Q-value, and the target network, which is used to stabilize
the learning process with a periodic parameter copy from
the policy network. DQN agent n is updated by:

Q(otn, a
t
n)

∇←α(rdtn+γmaxaQ(ot+1
n , at+1

n )−Q(otn, a
t
n)), (13)

where α is the step size. γ is the discounted reward factor,
rdt is the local reward of agent n in the t-th interaction.
maxaQ is the maximum Q-value selected from the output
of the target network based on the observations ot+1

n .

3Sophon integrates the centralized route selection into the Markov
Decision Process, so each type of RL algorithm can be adapted here.



1) RL Details: We design the RL details as follows:

• Episode and Step: An episode refers to a human-made
data transmission interval of the request set R starting
from the initial network state during the training process.
R is continuously updated with completed requests, so
the episode length is limited by the given T , i.e., there
are a total of T -time transmissions in an episode. One-
time transmission is an RL interaction between the agent
and the network environment consisting of three stages.

• Local Observations: The local observations on of agent n
contain the candidate route information, memory usage,
memory remaining, and the neighbor information. The
candidate route information is denoted by Hr

k,n, which
is 1 if the k-th candidate route of request r traverses node
n, otherwise 0. The memory usage is Mr,t

n , r ∈ R and
the memory remaining is Cn −

∑
r∈R

Mr,t
n . The neighbor

information is denoted by In,n′ , which is 1 if there is a
physical link between node n and node n′. The length of
agent n’s local observations is |R|(|Pr|+ 1) + |N |+ 1.

• Action: The action an of agent n is Xr,t
n , which denotes

how many qubit resources agent n pre-allocates for request
r. We set Xthr as the upper bound of variables Xr,t

n

because the transmission ability of the entanglement link
is limited by its physical properties. To transmit data
for multiple requests concurrently, we design “request
modules” to individually determine the action Xr,t

n for
each request. The action space size of each agent is
|R|Xthr.

• Reward: The local reward rdtn of agent n contains the
memory usage, the contribution to the requests, and the
payment given by the global controller:

rdtn =
∑
r∈R

Y r,t
k Hr

k,n(M
r,t
n +Xr,t

n ) + pytn, (14)

where pytn is the global payment, which denotes the
number of completed requests. Y r,t

k and Mr,t
n are limited

by the constraints in the centralized routing stage and
impact the process of memory pre-provisioning in the t-th
entanglement transmission of the distributed agents.

2) An Improved Policy Network: To concurrently provi-
sion resources for multiple requests, we design an improved
policy network architecture that divides the output layer of
the policy network into |R| request modules. Each request
module has two full connection layers and individually
determines its provisioning policies Xr,t

n . The improved
policy network is trained using the following process.

Given is a mini-batch of tuples (O,A,RD,O′) with the
size of bs sampled from the experience pool, where O =
{oi}Ni=1 and A = {ai}Ni=1. For agent n, the policy network
contains two parts: Fbf,n

eval with the parameter θbf,neval which are
the common neural layers and the ”request modules” Fr,n

eval.
The output of Fbf,n

eval is Fbf,n
eval,t(o

t
n; θ

bf,n
eval,t). The output of the

request module r is:

Fr,n
eval,t(

1

|R|
Fbf,n

eval,t(o
t
n; θ

bf,n
eval,t); θ

r,n
eval,t), r ∈ R. (15)

Therefore, the outputs of the policy (evaluation) network in
the t-th transmission are denoted as:

eval outst = concat(Fr,n
eval,t(o

t
n; θ

n
eval,t)), r ∈ R. (16)

concat is the concatenation operation. Q-values of policy
networks are deduced as:

Qt
eval = concat(Fr,n

eval,t(o
t
n, a

t
n; θ

r,n
eval,t))

N
n=1 (17)

where atn ∈ A is the historical action for the observations
otn, which is used to choose the Qt

eval. Considering Eq. (17)
and Eq. (13), all DQN agents are trained concurrently with
the mini-batch experience.

C. Routing Stage

The routing stage aims to select the optimal route from
the candidate route set for E2E entanglement establishment
based on the pre-allocated resource policies Xr,t

n obtained
in the provisioning stage. With the given Xr,t

n , the link-
level data transmission χr,t

n,n+1,k is computed by Eq. (8).
With the different transmission abilities of entanglement
links, we formulate an exact Integer Linear Programming
(ILP) to maximize the total transmission data volume to
select the optimal E2E entanglement routes for the request
set R, constrained by the E2E entanglement quality, the
transmission delay, and the node capacity.

1) Problem Formulation: The E2E route selection is
formulated as follows:

obj : max
∑
r∈R

∑
k∈Pr

∑
n∈Pk

r

Y r,t
k Hr,t

k,nΦ
r,t
n,n+1,k, ∀t ∈ T (18)

s.t. : Y r,t
k

∏
n∈Pk

r

»
Φr,t

n,n+1,kH
r,t
k,np(1− p)

Φ
r,t
n,n+1,k

−1
P k
r (e)

≥ Fthr,∀r ∈ R, ∀t ∈ T

(19)

∑
k∈Pr

Y r,t
k Lr

k +Dt−1
r ≤ Dthr,∀r ∈ R, ∀t ∈ T (20)

∑
r∈R

∑
k∈Pr

Y r,t
k Hr,t

k,n(M
r,t
n +Φr,t

n−1,n − Φr,t
n,n+1) ≤ Cn,

∀n ∈ P k
r , ∀t ∈ T

(21)

∑
k∈Pr

Y r,t
k ≤ 1, ∀r ∈ R, ∀t ∈ T (22)

The objective is to maximize the total transmitting data
volume in the t-th transmission. Eq. (19) ensures the fidelity
of each E2E entanglement is larger than the threshold Fthr.
Eq. (20) imposes that the transmission delay of each request
r must be less than the threshold Dthr. Eq. (21) states
the node capacity limitation. Eq. (22) ensures the t-th E2E
entanglement of each request to be established by at most
one physical route.

We solve the above ILP with polynomial time complexity
by relaxing the integer variables Y r,t

k to the fractional vari-
ables ‹Y r,t

k ∈ [0, 1]. By using the Linear Programming (LP)
solver (an interior-point method [34]), we obtain fractional
solutions ‹Y r,t

k that can satisfy the fidelity, delay, and mem-
ory constraints while maximizing the global transmission
volume of data. Then, we improve the branch-and-bound



algorithm, which is adopted in [14], [35] to select the
approximately optimal E2E entanglement routes by intro-
ducing the local-objective filter and the multiple-constraint
filter in each branch.

Algorithm 1 Obtain the Integer Solution

Input: Current request r, Xr,t
n , sig;

Output: Integer solution Y †,r,t
k , sig;

1: Compute the transmission parameters Φr,t
n,n+1,k;

2: Initialize the queue Y = ∅;
3: ‹Y r,t

k , obj = LP solver(Φr,t
n,n+1,k, sig);

4: if objglocal > obj+
∑

r∈sig[r]>0

∑
k∈Pr

∑
n∈Pk

r

Φr,t
n,n+1,k then

5: sig[r] = −1;
6: return Y †,r,t

k , sig;
7: end if
8: for ‹Y r,t

k , r ∈ R do
9: if ‹Y r,t

k = 1 then
10: Y †,r,t

k = 1, sig[r] = k;
11: else
12: ‹Y †,r,t

k → Y ;
13: end if
14: end for
15: if len(Y ) = 0 then
16: return Y †,r,t

k , sig;
17: else
18: Sort Y in descending order;
19: Find the maximum ‹Y r,t

k ∈ Y,∀r ∈ R that sig[r] = 0;
20: Link-Level Branch-and-Bound (r,None, sig);
21: end if

2) Link-Level Branch-and-Bound Algorithm: Algorithm
1 is the entrance of the E2E route selection algorithm.
Lines 3-4 are the process of the local objective filter
where the new branch is cut if its optimal objective obj +∑
r∈sig[r]>0

∑
k∈Pr

∑
n∈Pk

r

Φr,t
n,n+1,k is smaller than the recorded

global objective objglobal. Then, part of integer solutions
Y †,r,t
k and its signals sig[r] are determined for the cases

where ‹Y r,t
n = 1, while the remaining ‹Y r,t

n are appended
into the queue Y in Lines 5-9. The Link-Level Branch-and-
Bound Algorithm executes with the maximum ‹Y r,t

n selected
from the queue Y sorted in descending order. Initially, the
selected route signals sig[r] are set to be −1, ∀r ∈ R, where
sig[r] = 0 denotes no route selection and sig[r] = k denotes
the selection of the k-th route. objglobal is set to be 0.

In Algorithm 2, all candidate routes containing the sub-
route P are first filtered by the multiple constraints in
Lines 2-4. It indicates that if the entanglement quality, the
transmission delay, and the traversed node memory of the
sub-route P meet all the requirements, the candidate routes
enter into the next branch. Lines 5-9 describe the deter-
mination of Y †,r,t

k under the condition where the number
of qualified candidate routes ‹Pr is smaller than 1. Then,
lines 10-12 update the globally recorded objective objglobal
based on the given Xr,t

n and the determined sig. This
branching node is a new request that goes into Line 13.

Algorithm 2 Link-Level Branch-and-Bound Algorithm

Input: Current request r, sub-route P , Xr,t
n , sig;

1: Initialize feasible routes ‹Pr;
2: for P ′ ∈ Pr do
3: if P ⊆ P ′ and P is feasible on Constraints Eq. (19),

Eq. (20), Eq. (21) then
4: ‹P .append(P ′);
5: end if
6: end for
7: if |‹Pr| ≤ 1 then
8: if |‹Pr| = 1 then
9: sig[r] = ‹Pr[0];

10: else
11: sig[r] = 0;
12: end if
13: if sig[r] > −1,∀r ∈ R then
14: Compute Φ̃′ based on sig and Xr,t

n ;
15: objglobal = Φ̃′ if objglobal < Φ̃′;
16: end if
17: Obtain the Integer Solution (r,Xr,t

n , sig);
18: else
19: Find the minimum i s.t. exist two routes

P ′(ni), P
′′(n′i) ∈ ‹Pr, satisfies ni ̸= n′i;

20: for P ′ ∈ ‹Pr do
21: ‹P = P .append(ni+1), ni, ni+1 ∈ P ′;
22: Link-Level Branch-and-Bound (r, ‹P ,Xr,t

n , sig);
23: end for
24: end if

Lines 15-18 demonstrate the branching process with at least
two qualified candidate routes. After finding the minimum
overlap node ni among all feasible routes, the current sub-
route P is extended by individually adding the next node
ni+1, P

′(n), P ′(ni+1) ∈ ‹Pr to recursively go into Link-
Level Branch-and-Bound.

3) Performance Analysis: Algorithm 1 is not only the en-
try point of solving the problem but also manages the inter-
dependent, concurrent calls to Alg. 2. We regard Algorithms
1 and 2 as an entity for analysis.

Theorem 1. The link-level branch-and-bound algorithm
is an approximation algorithm to solve ERQP’s routing
problem based on the known Xr,t

n and the candidate routes
P . It achieves the performance approximation of 1.5.

Proof. Let Φ̂r,t
n,n+1,k = −Φr,t

n,n+1,k, the routing problem is
transformed into a Variant of the Integer Multi-commodity
Flow problem (VIMF), formulated as the following:

obj : min
∑
r∈R

∑
k∈Pr

∑
n∈Pk

r

Y r,t
k Hr,t

k,nΦ̂
r,t
n,n+1,k (23)

s.t. : Y r,t
k

∏
n∈Pk

r

√
Φ̂r,t

n,n+1,k

Hr,t
k,npP

k
r (e)

(1− p)
Φ̂

r,t
n,n+1,k

+1
≤ Fthr, (24)

∑
k∈Pr

Y r,t
k Lr

k ≤ Dthr −Dt−1
r (25)



∑
r∈R

∑
k∈Pr

Y r,t
k Hr,t

k,n(M
r,t
n + Φ̂r,t

n,n+1 − Φ̂r,t
n−1,n) ≤ Cn (26)∑

k∈Pr

Y r,t
k ≤ 1 (27)

By using the column-generation approach to solve VIMF,
only a small subset of all columns is in the optimal solution,
which indicates that all columns with positive reduced cost
can be ignored, i,e., the problem is solved if the reduced
costs of all columns are positive.

Let ϑr,t1 , ϑr,t2 , ϑr,t3 be respectively the unrestricted dual
variables associated with constraints (24), (25), (27), and
−πr,t

n,n+1 be the non-negative dual variable associated with
constraints (26). Then, the reduced cost of the column k for
request r in the t-th transmission is:

Λ̂r,t
k =

∑
n∈Pk

r

(Φ̂r,t
n,n+1,k + Cr,t

n,n+1π
r,t
n,n+1)H

r,t
k,n

−
∑

i=1,2,3

ϑr,t
i ,∀r ∈ R, t ∈ T.

(28)

where Cr,t
n,n+1 = (Mr,t

n + Φ̂r,t
n,n+1 − Φ̂r,t

n−1,n). Each column
is identified by solving the shortest path problem for each
request with the edge weight (Φ̂r,t

n,n+1,k + Ĉt
nπ

t
n,n+1). The

reduced cost of the shortest path is Λ̂r,t
k∗ . If for all requests,

Λ̂r,t
k∗ ≥ 0, the VIMF problem is solved. Otherwise, the

shortest path k∗ is added to VIMF’s master problem. Hence,
our VIMF problem conforms to the branching rules in [35].

For the integer solution, the column must be generated
on the node of the branch-and-bound tree. When an optimal
solution to an LP relaxation is infeasible to the ILP, the lifted
cover inequalities are considered to cut off the infeasible
solution. VIMF has a simple 0-1 knapsack inequalities (26)
to deduce the link-level lifted cover inequality:∑
r∈Rcov

∑
k∈Pr

Y r,t
k Hr,t

k,n +
∑

r∈R̄cov

δr
∑
k∈Pr

Y r,t
k Hr,t

k,n ≤ |R
cov| − 1,

(29)
which cuts off the infeasible solutions for the link-level

adjustment and conforms to the cutting rules in [35]. Rcov

is the minimal cover of requests for the link (n, n + 1),
and R̄cov = R\Rcov . Moreover, the local-objective filter
introduces the link-level inequalities objglobal ≤ obj +
objdetermined and the multiple-constraint filter judges the
feasibility of sub-route, both to cut off infeasible branches.

Consequently, our link-level branch-and-bound algorithm
can achieve f∗(Y ∗) ≤ f(‹Y ) = f(Y †) + ϵ, where ϵ is the
remaining difference between the integer solution and the
optimal LP solution. We assume ϵ = 50%f(Y †), which is
a strong relaxation in almost all cases, except for the worst
performance of ϵ = 3.63%f(Y †) due to the termination
caused by a time out. Thus, we obtain f∗(Y ∗) = 1.5f(Y †).

D. Transmitting stage

Actual link-level data transmission and memory updating
occur in the transmitting stage. Distributed agents indi-
vidually maximize local rewards to pre-allocate the qubit
resources Xr,t

n for all requests. In the routing stage, the
centralized controller maximizes the total data transmission
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Fig. 6: Sophon’s workflow after being deployed in the
network.

volume to select the E2E entanglement routes Y r,t
k for all

requests based on the transmission parameters Φr,t
n,n+1,k.

With the determined Y r,t
k and Xr,t

n , the t-th transmission
executes to update memory usages to complete the global
state transition. The memory updating of each node is:

Mr,t+1
n =

®
M̃r,t+1

n , Mr,t
dr

< Vr

0, Mr,t
dr
≥ Vr

, (30)

where

M̃r,t+1
n = Mr,t

n +
∑
k∈Pr

∑
n∈Pk

r

Y r,t
k Hr,t

k,n(Φ
r,t
n−1,n,k − Φr,t

n,n+1),

(31)
where Mr,t

dr
≥ Vr indicates the request r is successfully

served by the network until the t-th transmission. The
memory usage Mr,t

n for r is released after a new request
is inserted into the request set R to fill up the position.

E. Deployment

Each agent is trained to cooperatively transmit qubit data
with constraints to satisfy the requirements of quantum
application requests while individually optimizing its re-
source utilization with local observations for selfish con-
sideration. The size of the inputs of each agent is fixed as
|R|(|Pr|+1)+|N |+1, which is related to the topology scale
and the request pool capacity. We provide two deployment
schemes for the trained RL agents to apply Sophon:

1) Fixed Requests: Given is a fixed number of requests
R with different data transmission requirements generated
by various quantum applications. R is divided into z request
pools, where z =

†
R
|R|

£
. The Rz request pool can be masked

by 0 if it is not filled up by the divided requests. Each agent
maintains z local environments for each request pool, but
all local environments share all node memory resources.

After the provisioning process, we obtain the resource pre-
allocation policy Xr,t

n,ζ . The global routing is to select the
E2E routes by solving the extensive ILP that maximizes the
transmission data volumes of R, where F is the extensive



Φ for the ζ-th request pool. In the transmitting process, the
node memory usage is updated in terms of the determined
Xr,t

n,ζ and Yr,t
k,ζ by releasing the occupied resources of the

completed requests, while each request pool deletes the
completed requests and randomly copies the uncompleted
ones to fill itself up. Agent terminates the interaction with the
request pool Rζ, ζ ∈ R when the required data transmission
of all requests inside is satisfied. In Fig. 6, the ζ-th request
pool Rζ copies requests rζ1 and rζ to fill up the request pool.

2) Flexible Requests: Give is an endless request queue
R̃. An initial request pool R, selecting |R| requests in
turn from R̃, builds an initial local environment to start
up the agent. With the determined resource provisioning
and routing policies, the node updates its memory usage
and judges whether the requests in the request pool R
were successfully responded to. The completed requests are
deleted from R, and their occupied resources are released.
The request pool R asks new requests from R̃ to fill the
pool. As shown in Fig. 6, the new requests rnew2 and rnew|R|
initially has no data memory usage.

VI. PERFORMANCE EVALUATION

A. Simulation Setup
We evaluate the performance of Sophon on a self-made

simulator, where the network topology is generated by using
the NetworkX library4 and Waxman model [36]. Sophon
is implemented using Python 3.6 for RL and Branch-and-
Bound algorithms while using Gurobi 9.1 as an LP solver.
We train and run Sophon on an Intel (R) Core (TM) i7
Windows 10 64-bit system with NVIDIA GeForce GTX
1660 SUPER. We provide public access to the data, code,
and results of the problem example in Section IV-A and
performance evaluation in Section VI at the GitHub 5. The
performance setup details are as follows:
Network Topology: The network topology is randomly
generated as an area of 100K units by 100K units square,
which contains 18 quantum nodes with an average of 3
neighbors of each node. We randomly generate requests with
different source and destination nodes, where the required
data volume of each request is uniformly picked up from the
interval [10, 20]. The node capacities of all quantum nodes
are generated by a Gaussian distribution with the expectation
µ = 17, the variance σ = 2, and the clipping by the bound
[9, 26]. We adopt Yen’s algorithm [37] to obtain the first
|Pr| = 3 candidate routes for each request.
Quantum State: We set the probability of a quantum state
to be |1⟩ as 0.5 and the scattering constant τ of decoherence
can be set as 0.1 in a specific environment [9]. Xthr, the
upper bound of variables Xr,t

n , is 4. The size of a request
pool R is initially 5. The thresholds of entanglement fidelity
6 and transmission delay are initially 10e− 8 and 150.
RL Agent: The size of experience pool is 10e3. The
discounted reward factor is 0.9. The learning rate α is

4https://networkx.org/
5https://github.com/yanangao1709/Sophon.git
6In the practical quantum system, the fidelity varies from the scatter

constant determined by the physical property.

10e − 3. The batch size of the inputs is 32. We save all
distributed agents after the training process of Sophon with
10e4 episodes. The step limitation of an episode is T = 10.
Baselines: Sophon deploys each trained agent for resource
provision on the network node and the route selection
algorithm on the centralized platform. We first verify the
effectiveness of Sophon by comparing it with OBO and
All in transmission frameworks and then introduce two
kinds of All in frameworks (EFiRAP and Multi R) to
further demonstrate the flexibility of Sophon. The baselines
are as follows:
• EFiRAP: An All in [12], [24] scheme where it maximizes

the network throughput by selecting the qualified entangle-
ment route limited by the node memory from all candidate
routes. Because of the computing complexity caused by
the traversal of all possible candidate routes, we use a
simple rounding to obtain the results when the problem
scale becomes larger.

• Multi R: A route-level AMOR [14], [23] scheme where
it maximizes the network throughput by selecting at-
most-one qualified route of a request limited by the node
memory. We obtain the solution by using the branch-and-
bound algorithm.

Performance Indicators: We provide the following indica-
tors to evaluate the effectiveness, flexibility, robustness, and
scalability of Sophon:
• The communication cost: It refers to tdone when all

transmission requirements of a request set are completed
for tdone-times entanglement transmission, denoted as:

obj : min tdone,∀r ∈ R

s.t. :
∑

t∈tdone

∑
k∈Pr

∑
n∈Pk

r

Y r,t
k Hr,t

k,nΦ
r,t
n,n+1,k ≥ Vr. (32)

• The algorithm running time: It refers to the time during
which the decision-making algorithms running on our
experimental platform output the routing and provisioning
decisions for one-time entanglement transmission.

• The convergence of Sophon: We adopt the number of the
completed requests, the total transmission data volume∑

t Φ̃ in an episode, the transmitting data of all completed
requests

∑
r Φ

∗, and the average transmitting ratio to
evaluate the convergence performance of Sophon. The
average transmitting ration is (

∑
r Φ

∗ −
∑

t Φ̃)/|R|.
• Quantum Bit Error Rate (QBER): It is related to the bit-

flip error rate caused by the collapse decoherence here.
Assuming the bit-flip error rate of a qubit in the multi-
qubit entanglement is p′′, we can derive the correlation
among QBER, fidelity, and entanglement dimension as 7:

F d
p′′ = Cd

d (1− p′′)d+
d∑

k=2

[
Cd−k

d

(
k!

k∑
kk=0

(−1)kk

kk!

)
(1− p′′)

d−k
(p′′/2)

k

]
.

(33)

With the given fidelity F d and entanglement dimension d
of a link-level entanglement, its QBER p′′ can be obtained
by Eq. (33).

7Sophon.git: Sophon/Document/Appendices.pdf.
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Fig. 7: The comparison performance on a fixed topology.
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Fig. 8: The comparison performance on various scales of topology.

• Signal-to-Noise Ratio (SNR): It refers to the ratio between
the pure state and the noised state, which is denoted as

|φ⟩F (|φ⟩)
|φ⟩(1−F (|φ⟩)) . |ψ⟩ is the initial state of a multi-qubit E2E
entanglement, and F (|φ⟩) is the fidelity probability in the
collapse decoherence model, obtained by Eq. (7).

• Quantum Phased Error Rate (QPER): It refers to the
phased-flip error caused by the collapse decoherence here,
which has no equivalent in classical computing, like the
QBER. Assuming the phased-flip error rate is p′, we derive
the correlation among QPER, fidelity, and entanglement
dimension as:

F d
p′ = p′d + (1− p′)d. (34)

With the given fidelity F d and entanglement dimension d
of a link-level entanglement, its QPER p′ can be obtained
by Eq. (34).

B. Performance Analysis

The Comparison Performance on a Fixed Topology: After
deploying the agent trained on a fixed topology with 18
nodes, we obtain the comparison performance with baselines
on a fixed topology in Fig. 7. In the implementation of
EFiRAP and Multi R, the node memory is occupied until
the request is completely satisfied with its transmission
requirement. Fig. 7(a) shows the increased tendency of
the communication cost when the scale of the request set
gradually becomes larger from 20 to 600. More requests re-
quire more entanglement transmission times. AMOR scheme,
containing Multi R and Sophon, performs better than All in
(EFiRAP) in the long-term communication process due to
the fairness consideration on each request. Sophon, as a link-
level AMOR scheme, requires less communication cost than
Multi R, a route-level AMOR scheme, because of the more
fine-grained provisioning on the qubit resources.

Fig. 7(b) and Fig. 7(c) respectively display the algo-
rithm running time and the throughput obtained in one-
time entanglement transmission. EFiRAP needs the most
time to complete the request set because it tries all possible
entanglement routes and iteratively runs the LP solver to
find the integer solution through traversing methods like
DP. Sophon, both fixed and flexible schemes, generates
the routing and resource provisioning policies faster than
Multi R, even though it is more fine-grained. This is be-
cause the distributed agent shares the solving complexity of
qubit provisioning, which decreases the size of the solution
space. However, from the short-term view, Multi R performs
worse on the one-time throughput than EFiRAP due to
the selection limitation of the candidate route, as shown in
Fig. 7(c). Benefiting from the more fine-grained resource
provisioning, Sophon compensates for this deficiency with
the best throughput performance. Because of the limitation
of the network resource, the one-time throughput is gradually
convergent as the scale of the request set becomes larger.

Fig. 7(d) shows the impacts of enlarged node memory on
the one-time throughput. We respectively generate the node
memory scales by adjusting the expectation of the Gaussian
Distribution, from which each node memory is selected
randomly. It is obvious that larger node memory brings more
throughput with 200 requests on a fixed topology. Sophon
is more sensitive to the network node memory than the
baselines due to the better fine-grained provisioning.

The Comparison Performance on Various Scales
of Topology. Fig. 8 displays the comparison
performance with baselines on the topology of
(18,27,36,45,54,63,72,81,90,99,108) nodes. With a fixed
(200) number of requests, the communication cost gradually
decreases as the topology scale enlarges. This is because
a larger topology brings more resources to satisfy the
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Fig. 9: The convergence performance of Sophon.
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Fig. 10: Approximate-Optimal route selection
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Fig. 11: The convergence performance of distributed agents.

transmission requirement of the request set. The resource
competition in each network node is relieved due to fewer
requests traveling from them. For the same reason, each
request can be allocated more qubit resources in the
network node, which brings more throughput in one-time
entanglement transmission. As shown in Fig. 8(c), all
methods obtain more short-term throughput as the topology
scale enlarges. Therefore, Sophon works well under the
circumstances, no matter whether the resource competition
is relaxing or tense in network nodes.

Fig. 8(b) provides the algorithm running time for respond-
ing to the fixed request set on various topology scales. We
can see that the a.r.t of all methods becomes longer because a
larger topology enlarges the solution space, which increases
the problem’s complexity. Sophon runs faster due to de-
composing the solution space into the routing and resource
provisioning stages. Fig. 8(d) displays the average memory
used rate of the network nodes as the topology scale. A
larger topology makes the network resource redundant for
the fixed request set, so the a.m.u.r. becomes smaller.

The Convergence Performance of the Global Objective:
Each RL agent’s training episode contains T = 10 times
of interaction with the network environment, i.e., 10 times
of E2E entanglement transmission. The total throughput is
the summation of all times in an episode. As shown in
Fig. 9 and Fig. 10, the total throughput gradually converges
as the episode becomes larger. Fig. 9(a) illustrates the
convergence process of the total throughput with various
sizes (5, 10, 15, 20) of the request pool. Because the agent
with the request pool of |R| = 20 can respond to 20
requests, its total throughput is larger than others. R = 20
agents converge much more quickly since they have more
interaction attempts with the network environment. Fig. 9(b)

displays the convergence process of the total throughput on
various scales of topology. We can see that a larger topology
conducts a better total throughput after converging.

Approximate-Optimal Route Selection: We train the dis-
tributed agent with the |R| = 5 request pool and select
the optimal policy for route selection from 45 = 1024 (the
number of candidate routes is 3) solutions in the routing
stage. Obtaining the optimal entanglement route from the
candidate route set for each request is hard because the
solution space is exceedingly larger with the increasing
complexity of (|P |+ 1)|R|. Sophon adopts the approximate
algorithm to reduce computational complexity and glob-
ally aims to maximize the total throughput. Therefore, in
Fig. 10(a), the total throughput of Sophon is smaller than
Sophon route optimal’s after the convergence. Fig. 10(b)
shows the convergence of the number of completed requests
between Sophon and Sophon route optimal, where Sophon
unexpectedly performs better. We take the average value of
these results to make the curve smooth. We infer that this is
because (1) the number of completed requests is considered
in the local reward of each distributed agent in Eq. (14), (2)
the total throughput of Sophon route optimal is redundant
for the requirement of the completed request, while RL can
eliminate these redundancies through the interaction with the
approximate route selection. Distributed RL agents bridge
the gap between the optimal solution and the approximate
solution in route selection while simultaneously maximizing
the global-local joint optimization objectives.

Convergence Performance of Distributed Agents: We
randomly generate 50 requests with their data transmission
requirements. The top 3 shortest candidate routes of each re-
quest are obtained using Yen’s algorithm. We record the used
times of each node in all candidate routes of the randomly
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Fig. 12: The noise-resistance of multi-qubit transmission
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Fig. 14: Sophon’s robustness on different thresholds

selected request set as node importance” and repeat this
process for 100 times to obtain Fig. 11(a). The node impor-
tance of nodes 5, 6, 11 are respectively 21.29, 17.51, 17.04,
and their memory capacities are smaller than others, which
leads to more complicated resource provisioning. Therefore,
we provide the performance of their agents. We exhibit the
local reward (in Eq.(14)) convergence of these agents in
Fig. 11(b), Fig. 11(c) and Fig. 11(d). 3 agents converge
approximately at 3700, 3500 and 2600 episodes. We display
the changes in memory usage of each agent, which converges
with the local rewards. It implies that more and more node
resources are effectively utilized in the training process. The
maximized memory usage of node 5 and node 6 is larger
than their capacities because of the accumulated memory
usage in an episode.
The noise-resistance ability: We first obtain the
fidelity by using Equation F d = F (|ψ⟩fd) =
1√
fd
p(1− p)f ·d−1e−τ(∆x)2 of a link-level entanglement

between two network nodes. Then, with a known fidelity
F d and entanglement dimension d, we obtain the link-level
QBER p′′ by using Eq. (33). The average QBER is obtained

by
∑

r∈R Y
r
k

∑|Pr
k |

h=0 p′′
h

|P r
k | , while the average SNR is obtained

by
∑

r∈R Y
r
k

∑|Pr
k |

h=0 Fd
h

|P r
k | , where h denotes the h-th link of

the route P r
k . We provide the performance analysis on

various scales of the request set to verify the advantages
of multi-qubit transmission. As shown in Figure 12(a), the
average QBER in the two-qubit scheme is much higher
than the ones in the multi-qubit scheme. It indicates that
multi-qubit transmission in Sophon is more robust than
two-qubit transmission because the multi-qubit scheme has
a better noise-resistance ability and higher entanglement
quality. Moreover, as shown in Figure 12(b), the multi-qubit

transmission scheme has a larger SNR compared to the
two-qubit transmission scheme. It results from the stability
of the high-dimensional entanglement state in terms of
the Equations F (|ψ⟩fd) = 1√

fd
p(1− p)f ·d−1e−τ(∆x)2 and

|φ⟩F (|φ⟩)
|φ⟩(1−F (|φ⟩)) .

Similar to QBER and SNR, we obtain the average QPER

of a request set by
∑

r∈R Y
r
k

∑|Pr
k |

0 p′

|P r
k | . Especially, QBER is

the same as QPER with the formulation F d = p2+(1−p)2
in the two-qubit entanglement transmission scheme. In the
multi-qubit transmission scheme, QPER is formulated as
a structured form to obtain the link-level fidelity, through
which QPER of a link-level entanglement can be obtained
by the inverse function F−1

p′ with the known fidelity F d.
We experiment with Sophon on different scales of the
request set, respectively, with the two-qubit and multi-qubit
transmission scheme to obtain the average QPER. As shown
in Figure 12(c), the multi-qubit transmission scheme has
a smaller average QPER than the two-qubit transmission.
Moreover, with the increasing scale of the request set, the
average QPER maintains an approximately stable trend.
Robustness on Thresholds: We run the deployed Sophon
to respond 20 requests with |R| = 5 agent for 50-times
to obtain the average performance of different thresholds.
As shown in Fig. 14, Sophon is significantly robust and
feasible for different scales of constraints. The increase
of the fidelity threshold brings a transmission burden to
Sophon with more total transmitting times. The increase
in the delay threshold accelerates the transmission process.
That’s because the fidelity threshold is the upper bound
of entanglement quality, while the delay threshold is the
lower bound of route delay. A higher fidelity threshold and
a smaller delay threshold mean that more candidate routes
of the request set are considered, which can obtain larger Φ̃
and further affect the overall transmission performance.

We set various communication cost thresholds to respond
to 200 requests on different scales of network topology
(1827, 36, 45 nodes). Fig. 13 illustrates that fewer times of
entanglement transmission can only complete the transmis-
sion tasks of fewer requests. Moreover, a larger topology is
more sensitive to the limitation of the communication cost
thresholds. This is because a larger topology possesses more
network resources to support the transmission requirements
of the request set, which can complete the transmission task
by consuming fewer times of entanglement transmission.



VII. CONCLUSION

In this paper, we study the problem of transmission
optimization in quantum networks. Focusing on the weak
transmission ability of the one-qubit quantum entangle-
ment and the limitation of network resources, we introduce
high-dimensional multi-qubit quantum entanglements with
W state representation, which is more noise-resistant for
quantum decoherence. We formulate the quantum network
model with multi-qubit entanglement and define the Entan-
glement Routing and Qubit Provisioning (ERQP) problem
to jointly optimize the global-local objectives with manifold
constraints. We propose Sophon, an online transmission
framework that decomposes the solution space into quantum
resource pre-provision and entanglement route selection. We
use multi-agent RL to pre-allocate resources and extend the
Markov process by introducing an approximately optimal
branch-and-bound algorithm to select E2E entanglement
routes. The extensive simulations on the self-made network
topology demonstrate that Sophon is efficient and flexible to
respond quickly to massive and heterogeneous transmission
requirements while optimizing the joint objectives.
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