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Abstract—With the flourishing of global services, low-latency
analytics on large-volume geo-distributed data has been a regular
requirement for application decision-making. Serverless comput-
ing, with its rapid function start-up and lightweight deployment,
provides a compelling way for geo-distributed analytics. However,
existing research focuses on elastic resource scaling at the stage
granularity, struggling to heterogeneous resource demands across
component functions in wide-area settings. The neglect potentially
results in the cost inefficiency and Service Level Objective (SLO)
violations. In this paper, we advocate for fine-grained function
orchestration to exploit wide-area resource elasticity. We thereby
present Demeter, a fine-grained function orchestrator that saves
job execution costs for geo-distributed serverless analytics while
ensuring SLO compliance. By learning from volatile and bursty
environments, Demeter jointly makes per-function placement and
resource allocation decisions using a well-optimized multi-agent
reinforcement learning algorithm with a pruning mechanism. It
prevent the irreparable performance loss by function congestion
control. Ultimately, we implement Demeter and evaluate it with
the realistic workloads. Experimental results reveal that Demeter
outperforms the baselines by up to 46.6% on cost, while reducing
SLO violation by over 23.7% and bringing it to below 15%.

Index Terms—Serverless computing, data analytics, function
placement, resource allocation, reinforcement learning.

I. INTRODUCTION

MANY global services, such as video streaming [1] and
social network [2], continuously produce large amounts

of data, such as user session and system operation logs. These
data are often stored in respective local Data Centers (DC),
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awaiting mining for advertising decision-making, system fault
diagnosis, and so on [3]. Researchers have explored effective
ways to process the geo-distributed data, pursuing an agreed-
upon Service Level Objective (SLO) in terms of completion
time. Otherwise, the results could be outdated [4]. Recently,
serverless computing with the form of Function-as-a-Service
(FaaS) [5] has flourished in data analytics offerings, due to its
promise of fine-grained resource elasticity and billing mode.
Many serverless systems [6], [7], [8] with distinct architectures
are devised to offer traditional data analytics services [9] in a
centralized DC. They effectively free developers from fussy in-
frastructure management. Nonetheless, it remains challenging
to harness the benefit of FaaS to provide comparable perfor-
mance across multiple geo-distributed DCs, what we refer to
as Geo-distributed Serverless Analytics (GSA), connected by
a Wide-Area Network (WAN). Existing wide-area schedulers
[10], [11], [12] struggle to be directly applied to the serverless
scenario, due to a lack of adaptation to its uniqueness.

Serverless systems decouple a monolithic analytics job into
stages, each consisting of stateless functions (i.e., tasks) that
execute in parallel [13]. They are stated as a Directed Acyclic
Graph (DAG) to implement specific logic. Owing to frequent
communication between stages (a.k.a., shuffle) through volatile
WAN links, carefully placing functions in a GSA job across
DCs is naturally necessary. Given the lightweight and rapid
start-up nature of functions, the intention is to move them to
where the data resides for local processing, as in prior works
[11], [12], to minimize WAN traffic. This is because migrating
geo-distributed data to a single DC for centralized processing
is limited by privacy regulations [10]. Nonetheless, the WAN
potentially brings unexpected variations in resource demand of
each function. In traditional serverful architectures, all tasks
stick to slots divided evenly from a fixed resource pool [14],
which is prone to resource over-provisioning [7]. In contrast,
serverless computing allows elastic resource scaling [15], [16],
[17], [18] to match the demands of stages that typically have
different input sizes. Despite the benefits, this coarse-grained
way remains inflexible and misses the potential of function-
level on-demand provisioning, resulting in cost inefficiency or
SLO violations in wide-area settings. Actually, each function
runs individually in an isolated container, loosely-coupled in a
job. They have the opportunity to be configured with tailored
resources based on heterogeneous demand. Thus, it is essential
to rethink the orchestration way of these functions.

In this paper, we advocate that wide-area resource elasticity
should be exploited via fine-grained function orchestration.
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Fig. 1. The execution DAG (left) and communication between stages (right)
of a serverless analytics job. The solid lines indicate stage-level dependencies
and the dashed lines mean fine-grained function-level dependencies.

That is, pursuing the on-demand placement and multi-resource
allocation (e.g., CPU and memory) at the function granularity.
There are three basic challenges in achieving this goal. First,
decisions regarding the placement and configuration for each
function are critical to the end-to-end Job Completion Time
(JCT) and cost. Nonetheless, it remains unclear how to handle
the complexity of such co-optimization and data dependencies
between stages. Second, the performance and cost of a function
are inherently related to the allocated resources. Additionally,
the cost is further affected by its duration time [19], which is
amplified in volatile wide-area settings due to more complex
cost components (e.g., WAN cost). Third, decoupling a data
analytics job into serverless architectures spawns a variety of
data-intensive functions with diverse resource demands. Thus,
accurately predicting the execution time of each function under
different input sizes and resource combinations is critical to
estimating both JCT and cost.

We thus propose Demeter, a fine-grained function orchestra-
tor that minimizes job execution costs for GSA while ensuring
JCT compliance with the agreed-upon SLO. First, we clarify
the manner and goal of the fine-grained orchestration. To glean
insights from the system operational pattern, Demeter adopts a
Multi-Agent Reinforcement Learning (MARL) algorithm that
jointly makes per-function placement and resource allocation
decisions. Specifically, it distills comprehensive and compact
cross-DC states from multi-level features through hierarchical
Graph Neural Networks (GNN). We then decouple the joint
actions according to their serial relation to shrink the decision
space. They are encoded by different NNs. To reduce model
complexity and the risk of mis-sampling, we devise a pruning
mechanism to further focus Demeter on a portion of the exten-
sive configuration pool. Besides, we enable elastic parallelism,
adjusting the number of functions (i.e., Degree of Parallelism
(DoP)) of the triggered stages, for function congestion control.
Finally, we implement Demeter based on Pheromone [6], an
open-source serverless system.

To the best of our knowledge, we are the first to implement
GSA, which exploits wide-area resource elasticity with fine-
grained function orchestration. In particular, the contributions
of this paper are summarized as follows:

• We first formulate the fine-grained function orchestration
problem, whose objective is to minimize the job execution
costs for GSA while guaranteeing SLO compliance.

• We propose Demeter, which makes on-demand orchestra-
tion decisions at the function granularity via a customized
MARL algorithm with a pruning mechanism.

• We further design a DoP tuning algorithm for Demeter,
which dynamically decides the DoPs of triggered stages
to solve the function congestion issue.

• We build a prototype system of Demeter, which outper-
forms state-of-the-art solutions in terms of the job’s SLO
compliance and cost savings via extensive experiments.

The remainder of this paper is organized as follows. In Sec-
tion II, we provide a brief overview of serverless analytics and
explain the motivation behind our insights. Section III descri-
bes the system model and formulates the fine-grained function
orchestration problem. The detailed model design of Demeter
and the DoP tuning algorithm are introduced in Sections IV
and V, respectively. Section VI presents the system architect-
ure of Demeter, while Section VII displays and analyzes the
experimental results in performance and overhead. The related
work is reviewed and discussed in Section VIII, with the paper
concluded in Section IX.

II. BACKGROUND AND MOTIVATION

In this section, we provide a brief background on serverless
analytics, and the huge potential of generalizing it to wide-area
settings, followed by the motivation behind our insights.

A. Serverless Analytics

Similar to traditional big-data systems [9], [14], a serverless
analytics job contains a DAG whose nodes are function stages
and edges denote their data dependencies. Fig. 1 (left) illus-
trates an example. Following the event-driven nature, a stage
is triggered when all of its dependent stages are completed. As
depicted in Fig. 1 (right), stages run in parallel over multiple
shuffled partitions of input data, and each partition is handled
by a corresponding function. Also, a stage finishes when the
last component function concludes. This makes data analytics
effectively benefit from serverless computing: (i) intra-stage,
the resources held by each function are instantly released upon
completion (from FaaS itself), and (ii) inter-stage, matching
resource demand of each stage can yield better utilization [16].
In contrast to the serverful tasks, which are stuck in resource
slots divided evenly, serverless functions are loosely-coupled
in a job [19]. This affords developers the freedom to decide
a configurable number of functions (i.e., DoP) in a stage and
amount of resources for each of them.

New opportunities. The serverless paradigm has struggled
to build analytics workloads due to the stateless formulation of
functions. Explicitly, direct communication between functions
is prohibited, as their containers are not addressable before-
hand [5]. Prior studies [7], [8] depend on external storage as an
intermediate data relay, along with the double transfer issues.
Recent advances in serverless systems [6], [20] have, however,
altered this case. For instance, Pheromone [6] is a promising
solution that enables intra-node functions to communicate via
local shared memory, and inter-node functions over networks.
This methodology unifies system and data exchange without
unstable third-party services, paving the way to expand server-
less analytics into wide-area settings. Meanwhile, the position
of functions with dependencies affects their data I/O efficiency,
especially across geo-distributed DCs.
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Fig. 2. An illustrative example of the fine-grained function orchestration for
a single stage. The stage’s DoP is 5, with the green bars equal (i.e., 5 units)
on the left and not identical on the right.

B. Why Fine-Grained Function Orchestration?
For single stages. Supposing that the investment cost of a

function is inversely proportional to its duration, Fig. 2 shows
the impact of fine-grained function orchestration on a single
stage. Due to the presence of remote data I/O over WAN links,
each function could incur a non-negligible transmission delay.
Allocating the equivalent computing resource for all functions
within a stage [15], [16], [17], [18], resulting in their execution
times to differ, even without any input skew [21]. Specifically,
the most lagging function f2 shown in Fig. 2 (left) dominates
the stage completion time (i.e., 12 units), which hinders the
potential performance improvements from inter-stage benefits.
Additionally, the earlier completed functions incur inevitable
output storage costs while waiting for function f2.

Fig. 2 (left) displays an ideal solution. As shown, it prefers
to skew more resources toward the critical function f2 to speed
it up, while over-provisioned functions f1 and f3 are slowed
down to conserve the budget (steps 1⃝ and 2⃝). The roles of
different functions within a stage, however, might switch due
to their interrelation. For example, when function f4 becomes
the new bottleneck, it is migrated into a warm container (step
3⃝) to maintain the balanced status in Fig. 2 (right). That is,

in-stage functions finish at similar times. By such means, the
stage completion time becomes 9 units (25% lower), while the
total execution time remains at 45 units. Thus, the solution is
reasonable, as the total cost, despite variations in resource unit
prices, would not undergo a significant increase and is fully
utilized to satisfy the SLO. Otherwise, more resources should
be invested for acceleration.

For multi-stage jobs. A general job involves a stage-wise
DAG with complex data dependencies, but it can benefit from
fine-grained orchestration as well. Fig. 3 shows this advantage
for a multi-stage job with the DAG in Fig. 1. In particular, the
naive solution in Fig. 3 (left) is to maintain all stages in balance
directly, leading to a JCT of 18 units. However, the start time
of stage 4 is determined by the lagging stage 2, implying an
inefficient allocation of resources across stages. Fig. 3 (right)
portrays a well-optimized solution through achieving the bal-
anced status of the entire job. Using an end-to-start method,
parallelizable stages (e.g., stages 3 and 2) are also supposed to
finish as close as possible (step 1⃝). This is because they share
the same downstream dependency (i.e., stage 4), and can be
treated as one large single stage that follows the above insight.
Due to the cascading of dependencies, the end-to-end SLO can
be met by further accelerating stages 1 and 4 (steps 2⃝ and
3⃝). This way reduces the JCT to 13 units, which is 28% lower
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Fig. 3. An illustrative example of the fine-grained function orchestration for
a multi-stage job (see Fig. 1).

than that of Fig. 3 (left). As such, a good orchestrator should
accurately identify the roles of functions, and make on-demand
orchestration (i.e., placement and configuration) for each one,
contributing to JCT within the SLO at optimal cost.

C. Challenges

The complexity of the joint optimization and the impact of
function performance on JCT pose three challenges:

Challenge 1: Complex intra- and inter-function correla-
tions. Both resource allocation and strategic placement of each
function will collectively affect its performance. The intuition
is to enumerate all the possible combinations to seek the best
orchestration plan. However, a serverless analytics job involves
a variety of functions belonging to various stages, each with a
large two-dimensional configuration pool (e.g., AWS Lambda
[19] allows memory limits within [128, 10240]MB and up to 6
cores). To achieve the above balanced status of jobs involving
complex data dependencies, such fine-grained decisions of all
functions require to be considered collectively. As a result, the
search range for enumeration will be huge.

Challenge 2: Volatile and bursty geo-distributed server-
less analytics environments. The remote function communi-
cation (e.g., during the all-to-all shuffle phase) requires traverse
WAN links between DCs [10]. As observed, both the total and
per connection WAN bandwidths are severely limited and in
sharp fluctuations (i.e., 24% to 76% deviation from the mean),
which is also reported to be distinctly tidal [3]. Such volatile
WANs exacerbate the function expenses. For example, it must
bear dual costs in terms of blocking execution and incurred
WAN traffic, during remote data reading. Moreover, serverless
platforms inevitably undergo cold starts and congestion when
faced with bursty-parallel functions [22], even with techniques
such as keep-alive [23]. The burstiness and volatility of GSA
environments jointly make it non-trivial to orchestrate large-
scale functions within triggered stages.

Challenge 3: Diverse function types and resource de-
mands. Functions in an analytics job are data-intensive, with
their execution times being heavily related to type and input
size [24]. Nevertheless, we still find that a function exhibits
varying resource sensitivities, even with a specific input. We
run a MapReduce sort over 10GB data on Pheromone-MR [6]
repeatedly. As illustrated in Fig. 4, increasing CPU cores for a
function with a fixed memory capacity can effectively enhance
the performance. Yet, CPU over-provisioning can exacerbate
the multi-process overheads (e.g., startup and blocking), which
become significant bottlenecks and result in an execution time
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Fig. 4. The execution time of a data-intensive function under different CPU-
memory combinations.

bounce. On the other hand, the multi-core benefits can only be
fully utilized when there is ample memory size. Besides, inside
information about user functions (packed as a black box [25])
is denied access, which further complicates the estimation of
the resource demands for each function within jobs.

III. PRELIMINARIES

In this section, we first elucidate the system model and the
function orchestration methodology within a GSA job. Subse-
quently, we formulate our fine-grained function orchestration
problem. For clarity, the vital notations are listed in Table I.

A. System Model
We consider a system G = (N ,L) as illustrated in Fig. 5,

consisting of N geo-distributed DCs in the set N that enable
serverless analytics services, with the assumption that they can
provide sufficient computing resources [10]. Contrary to the
relatively stable network with adequate bandwidth inside them,
these DCs are inter-connected via volatile and limited WAN
links L = {li,j | 1 ≤ i, j ≤ N, i ̸= j}. The user will request
to query data stored on a subset of DCs, which is parsed into
a serverless analytics job comprising stateless functions poten-
tially distributed on these DCs [7]. As previously discussed,
we consider the decoupled function configuration of any CPU-
memory combination, without forcing a proportional alloca-
tion [19]. So we define an allocation type as p = (pc, pm) ∈ P ,
where pc and pm are the number of CPU cores and memory
limits, respectively. Here, p is non-preemptive and consistently
available to a function until the end or timeout.

B. Function Orchestration for Geo-Distributed Analytics
Serverless systems typically operate in a multi-tenant envi-

ronment, with new requests from various users being registered
continuously [26]. We thus consider a total of T wall-clock
timesteps T = [1, . . . , t, . . . , T ] that is divided evenly based
on the system performance. A total of J GSA jobs will arrive
continuously at any time in t ∈ T . In practice, each user tends
to launch the same query periodically on the freshest data [4].
Therefore, we do not distinguish between a user and a job
below. The query request Ωj of job j, submitted by user j, is
represented as a tuple, given by:

Ωj =
{
ϕ̃j ,Pj ,Sj ,Nj ,

{
mn

j , l
n
j

}
∀n

}
, (1)

where ϕ̃j is the arrival time, Pj is the user-defined job profile,
which includes metadata of stages and their trigger modes. Sj

TABLE I
THE NOTATIONS AND THEIR DEFINITION.

Notation Definition

G = (N ,L) A system with set of DCs N and network links L.
n ∈ N The index of the n-th geo-distributed DC.
li,j ∈ L The WAN link between the i-th and j-th DCs.

(pc, pm) ∈ P The index of the p-th resource allocation type with pc
cores and memory limit pm.

t ∈ T The index of the t-th wall-clock timestep.
Nj The subset of DCs where the input data of job j lies.
Sj The expected end-to-end SLO of job j.

vj,k ∈ Vj The index of the k-th stage of job j.
fj,k,i ∈ Fj,k The index of the i-th function of stage vj,k .

Qn,t
The set of functions in the waiting queue of DC n at
time t.

Pn,t The set of functions in the “wave” of DC n at time t.

xn
j,k,i ∈ X

A binary variable xn
j,k,i = 1 if function fj,k,i is pla-

ced on DC n; and 0 otherwise.

ypj,k,i ∈ Y
A binary variable ypj,k,i = 1 if function fj,k,i selects
a type-p allocation; and 0 otherwise.

ϕ̃j , ϕ̃j,k,i
The arrival time of job j and function fj,k,i, respect-
ively.

ϕj , ϕj,k, ϕj,k,i
The finish timestamps of job j, stage vj,k and functi-
on fj,k,i, respectively.

Cj,k,i, Cj The cost of function fj,k,i and job j, respectively.

is the expected job’s end-to-end SLO, Nj ∈ N is the subset
of DCs where the pending data is located, and mn

j , lnj sign
the path and offset of data bucket in DC n ∈ Nj .

Upon receiving Ωj , the system parses the job profile Pj into
multiple event-driven stages Vj = {vj,1, . . . , vj,k, . . . , vj,|Vj |},
where vj,k denotes the k-th stage of job j. Affected by cas-
cades of upstream dependencies, each stage may be triggered
at any time in t ∈ T . To avoid functions with long waits to be
orchestrated, we enable the distributed scheduling: each func-
tion of stage vj,k in Fj,k = {fj,k,1, . . . , fj,k,i, . . . , fj,k,|Fj,k|}
sends its invocation request to all the DCs in Nj , where fj,k,i
denotes the i-th function in the k-th stage of job j. They are
appended to Qn,t, which is the set of functions in the waiting
queue of DC n at t. Each DC schedules the functions in Qn,t

independently, but each of which is restricted to be assigned
to one DC. To avoid conflicts, it is essential to determine by
a coordinator with a global view (see Section IV-C). Finally,
the assigned functions are flexibly configured with customized
resources to adapt to the task complexity.

Notably, the number of functions in triggered stages could
exceed the limits of batch orchestration. Each DC thus will
continuously receive an uncertain number of function “waves”
during T timesteps, each of which denotes a batch of parallel
functions from co-existing jobs, i.e., the basic orchestration
unit. For each DC n ∈ N , it extracts functions in the current
“wave” by dequeuing functions in Qn,t until pending function
set Pn,t is full or Qn,t is empty. In a nutshell, given J job
profiles with arbitrary dependencies, each DC n needs to batch
orchestrate all functions in Pn,t at timestep t, which considers
two decision variables: (i) xn

j,k,i in set X , indicating whether
function fj,k,i is placed on DC n (= 1) or not (= 0), and
(ii) ypj,k,i in set Y , denoting whether function fj,k,i selects a
type-p allocation for its container runtime (= 1) or not (= 0).



IEEE/ACM TRANSACTIONS ON NETWORKING 5

Job A

Job C

WAN

Job B

Data Center 1

Datasets                 Region $1

Data Center 3

       Region $3                          Datasets

Data Center 2

Region $2                          Datasets

Intermediate 
Data

Serverless
Function

Configurable
Resources

......

............

Job B

Job A

Job C Job A

Job C

WAN

Job B

Data Center 1

Datasets                 Region $1

Data Center 3

       Region $3                          Datasets

Data Center 2

Region $2                          Datasets

Intermediate 
Data

Serverless
Function

Configurable
Resources

...

......

Job B

Job A

Job C

Fig. 5. The system infrastructure of serverless analytics over DCs located in
distinct geographic regions. The functions and data with the same color belong
to a job A, B, or C. The unit price ($) of resource (e.g., CPU, memory, and
WAN bandwidth) in various regions are generally heterogeneous [19], [27].

C. Function-Level Models

1) Function Duration Time: In practice, parallel functions
in a “wave” are orchestrated in sequence, and thus not started
simultaneously. The reason is that batch function orchestration
remains in a First-Come-First-Served (FCFS) paradigm at the
micro-level [28]. Besides the time components illustrated in
Fig. 2, functions are accompanied by an inevitable and skewed
waiting time before formal execution.

Intuitively, the execution time of a data-intensive function is
related to our allocation decision Y (see Fig. 4) and the input
size. In addition, it also suffers from non-negligible cold-start
and existing remote input transfer over WAN links L, which
depends on our placement decision X . Due to the presence of
inter-function interference and inherent cloud noise [16], the
decisions for widespread co-existing functions will also affect
it. Thus, the duration of function fj,k,i can be formulated as:

δj,k,i = ∆j,k,i +B (X,Y, dj,k,i) , (2)

where B(·) is regarded as a black-box function that expresses
the execution time, ∆j,k,i and dj,k,i are the waiting time and
input data size of fj,k,i, respectively. Its finish timestamp can
be calculated as ϕj,k,i = ϕ̃j,k,i + δj,k,i, where ϕ̃j,k,i is the
arrival time. Further, the finish timestamp of stage vj,k relies
on its last completed function, i.e., ϕj,k = maxi∈[|Fj,k|]ϕj,k,i.
Here we use [S] to denote the set {1, 2, · · · , S}.

2) Function Cost Model: In our problem setting, there are
operating costs, transmission costs, and storage costs.

Operating cost. The operating cost is correlated with the
function duration. We denote the price per core-second (CPU)
and GB-second (memory) of function at DC (i.e., region) n
as µn

m and µn
c , respectively, and the price for each function

request and orchestration as σn. The operating cost Cop
j,k,i,n,p

of function fj,k,i with type-p allocation at DC n is:

Cop
j,k,i,n,p = δj,k,i (µ

n
c · pc + µn

m · pm) + σn. (3)

Transmission cost. The transmission cost is expended on
reading remote results via expensive WAN links, as local data
exchange that briefly uses shared memory is generally free.
Let qi,j be the price per GB of data transferred via li,j ∈ L.
The transmission cost Ctrans

j,k,i,n of fj,k,i at DC n is:

Ctrans
j,k,i,n =

∑
l∈USj,k,i

slj,k,i · qnl,n, (4)

where slj,k,i is the amount of data read from upstream function
l ∈ USj,k,i, and nl is the DC where l is deployed.

Storage cost. Users incur extra costs for ephemeral storage,
which arises from: (i) the output of functions that finish early
is stored, awaiting the stage finishes, and (ii) the fault-tolerant
mechanism retains produced data until the dependent stages
end, ensuring it can be retransmitted in case of anomalies. Let
hn denote the price for storing data per GB-second at DC n.
The storage cost Cstore

j,k,i,n of fj,k,i at DC n is:

Cstore
j,k,i,n = (ϕj,k − ϕj,k,i︸ ︷︷ ︸

(i)

+maxdϕj,d − ϕj,k︸ ︷︷ ︸
(ii)

) ·mj,k,i ·hn, (5)

where mj,k,i is the amount of data output by fj,k,i, and ϕj,d

is the finish timestamp of its downstream stage vj,d ∈ DSj,k.

D. Problem Formulation

We now formulate the fine-grained function orchestration
problem in (6) – (14), which jointly optimizes the per-function
placement X and resource allocation Y to exploit wide-area
resource elasticity. The objective is to minimize the execution
costs of J jobs that arrive continually over a period T , while
meeting the respective SLOs, and hard constraints of resource
demands and data dependencies. In view of the volatility and
burstiness of the environment (i.e., volatile WAN bandwidths
and bursty-parallel functions), we ensure each job is completed
within the expected end-to-end SLO by orchestrating compo-
nent stages with fine-grained and best-effort.

min
X,Y

J∑
j=1

ωj · Cj (X,Y ). (6)

s.t. ϕj,k ≤ ϕj , ∀vj,k (7)

Cj =
∑
n∈Nj

∑
i∈[|Fj,k|]

∑
k∈[|Vj |]

xn
j,k,i

∑
p∈P

ypj,k,iCj,k,i, ∀j (8)

ϕj − ϕ̃j ≤ Sj , ∀j (9)∑
n∈Nj

xn
j,k,i = 1, ∀fj,k,i (10)∑

p∈P
ypj,k,i = 1, ∀fj,k,i (11)

xn
j,k,i, y

p
j,k,i ∈ {0, 1} , ∀n, p, fj,k,i (12)

α
∑

p∈P
ypj,k,i · pm ≥ dj,k,i, ∀fj,k,i (13)

δj,k,i ≤ Γ. ∀fj,k,i (14)

where ωj is a non-negative weight that denotes the priority of
job j, and Cj,k,i = Cop

j,k,i,n,p + Ctrans
j,k,i,n + Cstore

j,k,i,n. Inequality
(7) ensures that the finish timestamp ϕj of job j depends on
the last completed stage. Equation (8) defines the cost Cj of
job j as the aggregated cost of the full composition function.
Inequality (9) requires the JCT of job j to obey its SLO Sj .
Also, each function is placed on only one DC (constraint (10)),
and selects only one allocation type to deliver its container
runtime (constraint (11)). Constraint (12) ensures that both the
placement and allocation decisions are binary. To avoid out-
of-memory errors, each function should be allocated a memory
limit with a loss factor α to ensure that it is larger than the
input size dj,k,i (constraint (13)). Finally, constraint (14) stems
from the serverless platform’s short-lived limit on functions
[19], i.e., their durations should not exceed the timeout Γ.
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Fig. 6. The model workflow of Demeter.

IV. MARL-BASED FUNCTION ORCHESTRATION

In this section, we present the design of Demeter, which ex-
ploits wide-area resource elasticity with fine-grained function
orchestration for serverless analytics.

A. Algorithm Overview
Orchestrating functions across event-driven stages in “wave”

poses a challenging sequential decision-making problem. We
have the opportunity to explore the unknown performance ob-
jective B(·) and the impact of data dependencies (7) online by
replaying experiences, while accommodating the distributed
orchestration in Section III-B. Coupled with the generally fixed
and limited number of DCs for a cloud provider, Demeter is
devised as a MARL-based solution. Fig. 6 shows the workflow
of Demeter with an actor-critic architecture. Each agent n ∈ N
serves as the local scheduler for the DC n. With the state of a
function “wave” as input, each agent outputs a series of three-
dimensional actions, to place all pending functions within the
“wave” and allocate suitable resources to them.

To cope with the volatile and bursty GSA environments,
Demeter generates holistic and compact states for each agent
using scalable and hierarchical GNNs. These GNNs efficiently
extract in-depth semantic relations among functions and DCs
over multi-level features, capturing the time-varying impact of
network and function dependencies. To handle the complex
intra- and inter-function correlations, we introduce an actor
network with a pointer-score architecture to decouple the joint
optimization (6) based on the serial relation between decisions
X and Y . Also, the network facilitates batch orchestration to
further tap the inter-function correlation. To learn the diverse
resource demands of various functions, the decoupled actions
are encoded by different NNs. For function placement, agents
decode input states via a pointer network and collaborate to
make an affinity-guided decision. For resource allocation, the
raw states of placed functions and their pruned allocation types
are fed into a score network, spawning the corresponding re-
source priorities. The state representation and action encoding
are detailed in Sections IV-B and IV-C, respectively.

B. State Representation via Hierarchical GNNs
1) Feature Construction: Upon receiving a function “wave”

at time t, Demeter collects information from two levels: DC

and function, obtaining the desired raw features based on the
factors in Section III-C.

At the function level, we first classify all the functions in
active job j based on their current status. Next, we separately
construct raw features for functions in each group, i.e., Hj,t =
{Rj,t,Pj,t,Wj,t,Fj,t}, where Rj,t, Pj,t, Wj,t and Fj,t are
the feature sets of functions in running, pending, waiting and
finished status, respectively. The vectors of (|Vj |+ |Nj |+ 4)
dimensions in Hj,t are as listed below:

• Rj,t includes the type, current placement, resource con-
figuration, processed data size, and elapsed time for every
running function in job j.

• Pj,t includes the type, pending data size, and invocation
log that records the previous placement, resource peak,
and duration time for every pending function in job j.

• Wj,t includes the type, and invocation log that records
the previous placement, input data size, resource peak,
and duration time for every waiting function in job j.

• Fj,t includes the type, and invocation log that records the
placement, resource peak, input data size, and duration
time for every finished function in job j.

At the DC level, Demeter captures the number of remaining
functions and warm containers in each DC n ∈ N , and its
available bandwidth per connection with other DCs at t. In
addition, they are concatenated with a series of scalars, i.e.,
the unit prices of required resources in the current region, into
a flattened vector dn,t with a dimension of (|N |+ 7).

2) Hierarchical Embedding: As illustrated in Fig. 6 (left),
our state representation proceeds in a hierarchical and central-
ized manner. Initially, the DAGs of active jobs1 are embed-
ded by a GNN. Subsequently, the heterogeneous deployment
graph, formed by the aforementioned GNN embeddings of
active functions and the associated potential DCs, is further
encoded by another GNN. Finally, the generated embeddings
across DCs are divided into input states for each agent.

DAGNN. A job DAG2 defines fine-grained data dependen-
cies via edges, which are partial ordering over function nodes.
We naturally desire to integrate this strong inductive bias into
the DAG representation, as it covers vital information for the

1The arrival of a “wave” will activate multiple jobs, and the functions that
are running or runnable in these jobs are called active functions.

2The job DAG in our paper is a function-level DAG (see Section VI-B).
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Fig. 7. The embedding process of our DAGNN. For ease of display, we give
an example of single-function stages. Note that, the dashed (solid) lines in a
DAG depict data dependencies that have been (un)satisfied, and the “waiting”
function denotes a function that has not yet been triggered.

correlation between event-driven functions. DAGNN [29] is
driven by DAG-induced partial ordering, aligning well with
our goal. It aggregates only the predecessor to generate the
embedding hl

v for each node v in DAG G at each layer l, and
readouts the final graph embedding hG via DAG pooling.

Moreover, topological batching is incorporated in DAGNN
to process nodes in parallel. It divides a DAG based on the
topological order, where nodes without dependencies join the
same sequential batch {Bi}i≥0. All nodes in batch Bi can be
handled concurrently if their predecessors have all completed.
Note that, topological batching is capable of scaling to multi-
DAG cases for better parallel concurrency, as shown in Fig. 7.
By treating multiple DAGs as one disconnected large DAG,
we can merge their batches Bi of the same i for processing
simultaneously. This scalable way enables efficient embedding
for co-existing jobs. To this end, we combine the node features
Hj,t of each job DAG Gj as DAGNN’s initial input H(0)

t .

H(0)
t =

{
R(0)

t ,P(0)
t ,W(0)

t ,F (0)
t

}
=

⋃
j∈J |t+1

t

Hj,t, (15)

where J is the set of active jobs at t. After L-layer message
propagation with topological batching, we can get a function
embedding set H(L)

t = {R(L)
t ,P(L)

t ,W(L)
t ,F (L)

t } and a job
embedding set {hGj ,t}∀j . As shown in Fig. 7, we concatenate
each embedding in {R(L)

t ,P(L)
t } with its job embedding, thus

forming the final DAGNN representations of active functions,
denoted as {R̄t, P̄t}. They serve as raw features for function
nodes in another GNN that will be presented soon.

HTGNN. Note that directly stacking the features of pending
functions and potential DCs for each agent n will produce a
redundant state space (e.g., the same function in various Pn,t).
Also, the network condition observed at any time in t cannot
accurately reflect the real function runtime, due to the WAN
fluctuation and cross-traffic among DCs [3]. Given the hidden
graph structure in function deployment, we use another GNN
to learn dynamic node representations, while compressing the
state space via information aggregate across DCs.

Since active functions cover the most realistic information
reflecting their roles (i.e., resource demands) at the moment,
we connect them to associated DCs using edges, thus forming
a heterogeneous deployment graph Gt in Fig. 6. Precisely, a
running function node f ∈ R̄t connects with a DC node n if
function f is running on DC n, and a pending function node
f ∈ P̄t connects with a DC node n if it is in the pending

set Pn,t. We further design a Heterogeneous Temporal Graph
(HTG) G = {Gt′}tt′=1, where the slice Gt′ is the deployment
graph at t′. The intuition is that features {dn,t′}tt′=1 of DC
node n in the HTG are temporal-dependent [3], and the hetero-
geneous structures among graph slices are spatial-dependent
due to the execution evolution of active function nodes.

Fittingly, HTGNN [30] integrates spatial and temporal de-
pendencies to learn from historical evolution over our HTG G.
In each layer l, it first aggregates intra- and inter-relations with
neighbors for each node v ∈ Gt′ , then further embeds shared
DC nodes via temporal aggregation across Gt′ . Let {R̄t′ , P̄t′}
and {dn,t′}∀n be the raw features of the function nodes and
DC nodes in Gt′ , respectively. After stacking L layers, we can
derive the embeddings P̄(L)

t of pending function nodes at t.
Finally, we extract the HTGNN embeddings of all functions
in Pn,t from P̄(L)

t , as in Fig. 6, forming a set Pn,t as the input
state of the actor network (stated in Section IV-C) in agent n.

C. Action Decoupling Based on Pointer-Score Network

The architectural design of our actor networks is based on
the key insight that decouples joint placement and allocation
actions through their serial relation in (8). More specifically,
we only assign resources for favorably placed functions, which
avoids combining two actions into a large space for each agent.
To this end, we design a well-assembled pointer-score network
to encode the decoupled actions, while further decreasing the
computing complexity of training agents.

1) Pointer Network: Given the relevance of parallel func-
tions in Section II-B, those in a “wave” are critical contextual
information for each other, and should be processed together.
However, their number |Pn,t| is unknown for each DC n, due
to the uncertainty of the stage triggering. Although the length
of the input state sequence Pn,t is capable of being fixed to
the maximum by padding method in the Seq2Seq model, it
cannot be used to fix the output. We thereby cannot precisely
extract the information associated with each function from the
output sequence. In contrast, the pointer network [31] can learn
the conditional probability of an output sequence against the
element positions in an input sequence, which is well-suited
for encoding the placement action. Since functions in a “wave”
are equal, we re-design the pointer network for agent n using
Transformer without positional encoding as the encoder and
a single-head attention mechanism as the decoder, given by
(16) as follows:

hf,n,t =

{
−∞, MASK (f) = 0,

vT tanh (W1ef,n,t +W2en,t) , o/w,
(16)

where W1, W2, and vT are learnable parameters, ef,n,t is the
further Transformer embedding of each function f ∈ Pn,t over
their states Pn,t, to discover correlations within “waves”, and
en,t = avgf∈Pn,t

ef,n,t. The final attention score hf,n,t is used
as a pointer to the corresponding function f . Given restriction
(10), pointer hf,n,t is turned into the conditional probability
Pr (f |n) via a Softmax operator [31], which can be regarded
as the action that DC n responds to function f individually.
Note that, the padding will never be visited, as its score is
masked to −∞ and thus has probability 0. Finally, we utilize
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Bayes’ theorem to compute the posterior probability Pr(n|f)
in (17), guiding the final placement of function f [32].

Pr(n|f) = Pr(f |n) Pr(n)∑
n∈Nj

Pr(f |n) Pr(n)
. (17)

Considering DC load balancing [33] and less inter-function
interference, we approximate Pr(n) with the number of func-
tions running on DC n. Indeed, we place the function f on
the DC with the largest posterior probability (i.e., affinity):

xn
f :fj,k,i

=

{
1, n = argmaxn∗ Pr (n∗|f),
0, otherwise.

(18)

2) Score Network: It is essential to filter out the allocation
types that violate the hard constraint (13) prior to the formal
decision-making. This is because too low memory limits lead
to functions crashing directly, with no latitude for trial-and-
error [34]. While the output actions involving the above invalid
allocations can be simply masked by the actor network [32],
it still has to take unnecessary effort for them. To prevent this,
we introduce a score network, implemented as a multi-layer
perceptron with a single output neuron, to encode our resource
allocation action by dropping the invalid types.

Fig. 6 (right) visualizes the workflow of the score network.
Once the pointer network completes, agent n further handles
the HTGNN embeddings of functions placed on DC n via an
affinity queue. That is, functions with lower affinity should be
orchestrated as early as possible to enhance performance by
reducing waiting time. Specifically, each embedding concate-
nates with P ′ valid potential allocations in turn to produce a
batch of states sf,n,t = (s1f,n,t, . . . , s

p
f,n,t, . . . , s

P ′

f,n,t), where
spf,n,t refers to the state to select type-p allocation for function
f . Then, Demeter feeds spf,n,t into the score network to get a
scalar value gpf,n,t, which is interpreted as the score of type-p
allocation [25]. Finally, Demeter applies a Softmax operation
to convert the scores in (g1f,n,t, . . . , g

P ′

f,n,t) into the resource
allocation policy as follows:

ypf :fj,k,i
=

{
1, p = argmaxp∗Softmax(gp

∗

f,n,t),

0, otherwise.
(19)

Besides eschewing redundant computations, the score net-
work converges more easily due to its architectural simplicity.
It also facilitates model-parallelism (for the P score models),
accelerating resource allocation for each function.

Pruning mechanism. Despite the advantages of the score
network, allocating resources for a “wave” across wide func-
tion configuration spaces still incurs significant inference over-
head and makes it likely to sample in-appropriate allocation
types. Runaway function performance may cascade across the
entire job once mis-provisioned, with this influence potentially
leading to SLO violations. In light of this, we devise a pruning
mechanism to guide decision-making by focusing Demeter on
a certain segment of each function’s configuration pool.

Algorithm 1 illustrates the pruning mechanism that builds
on function invocation records from recent job history. Recall
that job runs over time generally have varying input sizes,
which also applies to any of its functions. For simplicity, we
categorize the invocation records for each type of function by
input size. An input size class refers to a scope of input sizes

Algorithm 1: The pruning mechanism of Demeter.
Input : Affinity queue of DC n at time t, An,t;

Function allocation type set, P;
Output: Pruned configuration pool, M ;

1 while An,t is not empty do
2 func← An,t.dequeue ();
3 Initialize the configuration pool: M ← [1, |P|];
4 for p ∈ P do
5 if α× pm ≥ func.input size then
6 M = M ∩ [p, |P|]; break;

7 β2 ← current job progress obtained by (20);
8 func.Set_Progress (β2);
9 Get the unified metric: β ← func.β1 × (1− β2);

10 records← Query_History (func.stage id,
func.input size);

11 for rec ∈ records do
12 baseline type← rec.alloc type;
13 if rec.peak / rec.alloc ≥ 0.8 then
14 temp←M ∩ [baseline type, |P|];
15 else
16 if rec.β1× rec.β2 > β then ▷ Urgency
17 temp←M ∩ [baseline type, |P|];
18 else ▷ Non-urgency
19 temp←M ∩ [1, baseline type];

20 if temp is empty then
21 break;

22 M ← temp;

that exhibit similar resource demand [24]. As such, Demeter
only queries the records that fall within the belonging class
(line 10) and prunes the configuration pool for the functions in
the affinity queue accordingly. More specifically, we first cali-
brate the resource lower bound based on the over-provisioned
invocations (lines 13–14). If usage peaks exceed 80% of the
allocation, an invocation is deemed to be overloaded and needs
extra resources. Afterward, a function is assessed by treating
each of its invocations as the baseline (lines 16–19). During
orchestration, each invocation has spawned two properties: (i)
affinity β1, which reflects the function performance in terms
of startup and communication, and (ii) progress β2, denoting
the urgency for job completion, derived from (20) as follows,

β2 =
maxf∈Fj,t−1

ϕf − ϕ̃j

SLO
, (20)

where Fj,t−1 is the finished function set for job j until t− 1,
and thus the numerator counts its elapsed time. If the current
function has higher affinity and slower progress, its configura-
tion range should naturally be looser than the baseline. Con-
versely, it is supposed to be tightened. Nonetheless, there are
partial invocations whose resource demands are ambiguous.
That is, they are above or below the current function in both
properties. Given this, we combine the two above properties
into a unified metric β, specified by β1(1− β2). Demeter can
prune the function configuration pool by comparing its β with
that of the baseline. In case of urgency, it is reasonable to
search upwards from the baseline type to accelerate function
execution, or downwards in reverse to reduce costs. During this
period, the pool is guaranteed not to be empty. Otherwise, the
pruning will be terminated immediately (lines 20–22).
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D. Model Training

To learn the explicit end-to-end goal, we train Demeter in
episodes. An episode contains function “waves” from J jobs,
with each requiring one or more actions for orchestration.

Reward. In timestep t, each agent receives an immediate
reward 0 after taking an action to orchestrate a function. The
time in MARL next advances forward. Until Demeter finishes
the orchestration of the current “wave”, the environment state
does not move on the time axis. Recall that job cost and
JCT are considered in our problem, where the former is the
direct optimization goal (6), and the latter deals with the SLO
constraint (9). They both necessitate global information to be
determined, we thus feed Demeter with a shared reward rt,

rt = −
∑

j∈J |t+1
t

ωj(
∑

f∈Pj,t

Cf − β(S∗
j − lj)), (21)

where ωj = 1/|J |, J is the set of active jobs at t, Pj,t is
the pending function set of job j at t, Cf is the total cost of
function f , and β is the penalty factor. The remaining SLO
S∗
j = Sj−(maxf∈Pj,t

ϕf−ϕ̃j) of job j for awarding good and
total timeout lj =

∑
f∈Pj,t

max (δf − Γ, 0) for penalizing bad
actions, where δf and ϕf are the duration and finish timestamp
of function f , respectively. Note that Demeter is guided to
ensure that JCT of job j complies with the SLO by optimizing
the gap S∗

j between them continuously, instead of imposing a
penalty upon final violation. This is because such sudden and
large penalties cannot provide timely and effective feedback
to “wave”-wise orchestration actions, and may even hinder the
model convergence. The objective of agent n is to maximize
the cumulative reward given by J (θn) = E

[∑T
t=1 γ

t−1rt

]
,

where the discount factor γ is set to 1 as these actions are of
equal importance over time [35].

Training algorithm. Due to the high concurrency and short-
lived nature of serverless functions in jobs, lots of invocation
information is available in every timestep. To relieve training
instability, we select a cooperative policy gradient-based algo-
rithm, Multi-Agent Proximal Policy Optimization (MAPPO)
[36], to jointly learn the near-optimal orchestration policy. We
primarily focus on two benefits: (i) PPO is a stable on-policy
method that can better handle large-scale samples while being
much simpler to adjust, and (ii) the smooth policy updates in
PPO can alleviate the nonstationarity issue in MARL [37].

For each agent n, the MAPPO algorithm defines a ratio
function pn,t(θ) =

πθn (an,t|sn,t)
πθ′n

(an,t|sn,t)
to prevent the current policy

πθn from getting far from the old policy πθ′
n

. It updates the
policy with a clipped loss function:

E
[
min

(
clip (pn,t(θn), ϵ) Ân,t, pn,t(θn)Ân,t

)]
, (22)

where ϵ is a clip threshold, clip (·) ensures that pn,t(θn) falls in
the interval [1−ϵ, 1+ϵ], and Ân,t is the generalized advantage
estimation with advantage normalization.

Explicitly, we train Demeter with 2000 episodes, using a
clipping threshold ϵ of 0.2, a penalty factor β of 0.3, and a
function timeout Γ as 2 minutes. When an episode ends, agent
n updates its policy πθn using a set of trajectories (s,a, r)
collected from each “wave” in a batching manner. Here, s, a
and r denote the states, actions and rewards, respectively.
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Fig. 8. The potential performance loss due to stage splitting.

V. FUNCTION CONGESTION CONTROL

A. Practical Issues

In contrast to some single-task schedulers [25], [32], Deme-
ter orchestrates batch functions in the form of “wave”. Stable
and moderate function requests are vital for Demeter, but this
is not realistic in serverless analytics scenarios. The triggering
of each stage is uncertain because it is jointly determined by
all upstream dependencies. This burst-parallel nature [22] can
induce varying degrees of function congestion, when arriving
functions are out of the “wave”. For example, either lots of
stages or a few stages with lots of functions are triggered. In
turn, there arise the following two practical issues:

(i) Potential performance loss due to stage splitting. Recall
that if a stage cannot be accommodated by a “wave”, then its
overflowing functions will be split into one or more subsequent
“waves”. As shown in Fig. 8, functions f4 and f5 are congested
into “wave” 2. This stage splitting may exacerbate the inherent
waiting skew described in Section III-C1, which entails a po-
tential performance loss. Despite efforts to eliminate cold-start
by pre-heating and allocating saturated resources, functions f4
and f5 fail to catch up with others owing to prolonged waits.
Hence, it is non-trivial for Demeter to remedy this loss within
stages through fine-grained orchestration.

(ii) Asymmetrical arrival of jobs and functions. The DoP
of stages as metadata for job profiles needs to be set before
submission. In serverless scenarios with nearly unlimited re-
sources, developers can only configure defensively according
to previous experience (e.g., input share [13]). Coupled with
the short-lived limits, numerous functions are completed and
invocated in each orchestration interval. Even with ideal job
arrivals, there is still significant function stacking that leads to
persistent congestion. Especially for jobs with a longer elapsed
time, they have a lower buffer time before an SLO violation.
Thus, Demeter may not even have an opportunity to salvage
them via aggressive orchestration across stages.

B. DoP Tuning Algorithm

Benefiting from the fine-grained resource elasticity provided
by serverless computing, we can enable elastic parallelism to
determine the number of functions (i.e., DoP) for any stage
[15]. Unlike in serverful analytics, this process can be done at
runtime due to the event-driven nature. Thus, our congestion
control solution is based on the idea: at each orchestration, we
tune the DoPs of triggered stages so that the sum falls within
the “wave” size while maximizing performance. This synchro-
nizes function arrivals with orchestration, thus eliminating the
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potential function congestion and offering Demeter latitude to
pursue the end-to-end goal with the fine-grained orchestration.
Besides, a lower DoP can promote intra-function parallelism,
facilitating to reduction of overhead in initializing containers
and language runtime repeatedly [21].

Intuitively, the stages within a “wave” are inherently paral-
lelizable, and free of data dependencies. If their job DAGs are
connected into one large DAG via a dummy start node, these
parallel stages should also be balanced to contribute to this
large job, as described in Section II-B. Based on the existing
stage execution time model T (vi, di) = αi/di + γi [18], we
model the DoP tuning of k stages for a DC as:

α1

d1
+ γ1 =

α2

d2
+ γ2 = · · · = αk

dk
+ γk, (23)

s.t.
k∑

i=1

di = wave size, (24)

di ∈ Z+, i = 1, 2, . . . , k, (25)

where di is the DoP of stage vi, and αi and γi are the fit-
table parameters indicating the serialization time and inherent
overhead, respectively. The term αi/di is thus the parallelized
time. Ignoring the slight effect of γi for now, we can obtain
di/dj = αi/αj that guide the dividing of DoP within a limited
“wave” size. We round down the computed di to the nearest
integer and set it to one if di < 1. Note that, this ratio also
proved to be an optimal solution for

min
(d1,...,dk)

max

{
α1

d1
+ γ1, . . . ,

αk

dk
+ γk

}
, (26)

s.t. (24), (25), (27)

which can provide optimal balanced performance for all par-
allel stages under finite DoPs [18].

First, DoP tuning is conducted on each DC that experiences
congestion, i.e., when the functions in its waiting queue exceed
the orchestration batch. If the number of triggered stages is
greater than the “wave” size, late-arriving stages that cannot
be accommodated are assigned to the next “wave”. Recall that
function requests are dispatched to all the potential DCs, so the
tuning results need to be synchronized for global consistency.
More concretely, each stage selects the lowest DoP as the final
value to ensure (24) across all DCs. Afterward, Demeter re-
partitions the input data and calibrates function requests for the
stages in which the DoP changes (see Section VI-B). Finally,
the uncertain impact of heterogeneous function demands and
data dependencies (e.g., stages 1 and 3 in Fig. 2) will be further
handled by the MARL model atop job DAGs updated partially
with new DoPs. This is also the reason why we can omit the
inherent overhead, even though it can be apportioned by higher
(intra- and inter-function) parallelism for most stages.

VI. IMPLEMENTATION

We implement Demeter atop Pheromone [6], a data-centric
serverless system that enables fine-grained data exchange, such
as all-to-all shuffle. Concretely, intermediate data between two
consecutive stages is placed into the zero-copy shared memory
in the form of a bucket abstraction. The data in each bucket
is divided based on their metadata (e.g., specified key), with
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Fig. 9. The architecture of Demeter.

each group being consumed by an associated function. We re-
architect it on a Kubernetes [28] cluster and develop several
tailor-made components to drive Demeter.

A. Overview

Fig. 9 displays an architecture overview of Demeter. Given
the design of centralized state representation and shared reward
in Demeter, we do not disperse each agent to its corresponding
DC, thus reducing the communication overhead between the
global coordinator and DRL agents. The desired information of
Demeter is piggybacked on the bucket status synchronization
during inter-node scheduling. Besides, we also deploy multiple
coordinators in a shared fashion, each integrating a replica of
Demeter and managing a batch of disjoint jobs, so as to further
improve the system scalability.

The running process of Demeter is shown. First, the query
requests are created by the client based on user codes. The
coordinator then admits and parses them into a sequence of
event-driven stages. It routes the parallel function invocations
to all potential DCs asynchronously, when a stage is triggered.
Before batch orchestration, each DC draws up the DoP tuning
plan via the coordinator. The plan is delivered by the bucket
partitioner. Then, the DAG optimizer inputs the observations
(e.g., necessary invocation history) from the durable key-value
store, generating or updating the ExecutionGraph for the
DAG-driven state representation. Next, Demeter makes per-
function orchestration decisions to notify each DC. Owing to
the data-centric design of Pheromone, fine-grained knowledge
of data-to-function dependencies (e.g., the pending data size)
can be exposed via system APIs. Finally, the codes encapsu-
lated by the function driver execute by forcing the allocated
resource for executors.

B. Components

DAG optimizer. The DAG optimizer identifies stage types
based on the trigger primitives (e.g., DynamicJoin→map,
DynamicGroup→reduce) in job profile [6]. It first constructs
the initial LogicGraph (Fig. 10(a)), where nodes are stages
and edges mean the dependency modes. For successive stages
with the same partition layout (i.e., co-partitioning [38]), in-
termediate data between them flows in a one-to-one mapping,
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meaning one downstream function exclusively reads data from
an upstream counterpart. This unusual shuffle is replaced as
forward. At the same time, the optimizer chains them as an
all-new stage to further generate the JobGraph (Fig. 10(b)).
Specifically, upon a parent function finishes, its container is
repurposed by fork() new processes of the child, avoiding
cold start and transmission delays. By such means, a function
chain is formed as a placement granularity, but its component
functions remain separate in execution. Finally, the optimizer
splits each stage node into parallel function nodes, and decides
inter-function links to generate the ExecutionGraph (i.e.,
function-level DAG, see Fig. 10(c)).

Function driver. Given function configurations with decou-
pled CPU and memory, it is essential to take full advantage
of multi-core performance. To this end, we build the function
driver to enable multi-process support. Concretely, the driver
first gets the number of CPU cores pc allocated for a function.
When the input data is retrieved from the external storage or
memory, it evenly divides the data into pc sets and fork()
the corresponding number of processes. Each process handles
a batch of data by calling the function code. For Inter-Process
Communication (IPC), we reuse the relevant bucket designed
for inter-function IPC in Pheromone. This intra-function IPC
approach incurs no additional memory, while eliminating the
overhead in aggregating multi-process output.

Bucket partitioner. Data grouping in a bucket is intricately
tied to the DoP of the downstream stage and arranged prior
to triggering. Hash partitioning, commonly used in traditional
data analytics systems [9], [14], becomes impractical for the
elastic parallelism. Whenever the downstream DoP alters, the
entire data bucket must undergo a complete repartitioning. To
obviate this, Demeter partitions buckets based on JumpHash
[39], a fast consistent hashing algorithm that ensures balanced
key-to-group mappings while minimizing perturbation. Thanks

to its monotonicity, only partial data is required to be migrated
into the new groups (Fig. 11(a)) or out of unavailable groups
(Fig. 11(b)). However, JumpHash only permits groups to be
regulated at the end of buckets. Given this, new functions can
be triggered and appended to Pn,t directly. For invalid func-
tions, Demeter skips the corresponding number of elements in
Qn,t when extracting “waves”.

VII. EXPERIMENTAL EVALUATION

This section evaluates the performance of Demeter against
the baselines, and the effectiveness of its components.

A. Experimental Settings
Model configurations. We train the MARL using PyTorch.

The model depth L of both GNNs is set to 3. For HTGNN,
we set the time window size as 5 and accelerate it using a
memory module [40] to match the parallelized DAGNN. In the
pointer network, its Transformer encoder is configured with 3
layers and 8 attention heads. The score network has two fully
connected hidden layers with 32 and 16 neurons, using Tanh as
the activation function. Note that critics share the same neural
and input structure as the score network, and they are updated
with the corresponding average score. Both actors and critics
use Adam optimizer with a learning rate of 3× 10−4.

Setup. We deploy Demeter in an AWS EC2 cluster which
consists of 28 instances across 8 regions (Paris, Ohio, Oregon,
London, Virginia, Singapore, Sydney, and Tokyo), and the DC
in one of these regions has 3 worker instances. In addition, we
deploy 4 shared coordinators following the ratio in [6]. The
coordinators and workers are run at c5.4×large and c5.9×large
instances, respectively. Each function can be configured with 8
cores at most and memory limits from 128MB to 10 240MB
with 64MB increments.

Workloads. We generate serverless job sets using analytics
benchmark suites: TPC-DS [41] and BigData [42]. By default,
the stages invoke functions based on the size of intermediate
data [13]. Each function is written in Python and calls sys-
tem interfaces using ctypes [43]. For the datasets, we put
relatively small tables in an S3 bucket in one of the regions
and evenly split large tables into multiple regions. Moreover,
we run the jobs with varying input sizes by tuning the scaling
factor in suites. To expedite Demeter’s training by reducing
function duration while ensuring the continuous availability of
resources, the adjustments are made at a lower-level.



IEEE/ACM TRANSACTIONS ON NETWORKING 12

Demeter Astrea Aquatope Ditto Pheromone
0

1

2

3

4
 Norm. JCT     Cost

C
o
s
t 
($

)

N
o
rm

a
liz

e
d
 J

C
T

Methods

0

1

2

3

4

5

(a) Normalized JCT and cost.

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

C
D

F
 (

%
)

SLO bias

 Demeter

 Astrea

 Aquatope

 Ditto

 Pheromone

(b) CDF of SLO bias.

Fig. 12. The overall performance under the 4-agent cluster setting.

Job arrivals. Our MARL model is trained with job ar-
rival rates within 24 hours following the Facebook Hadoop
Workload Trace [44]. We select three modes: slow (50 jobs
arriving in one hour), normal (80 jobs arriving in 30 min),
and burst (100 jobs arriving in only 15 min).

Baselines. We compare Demeter with the following base-
lines. Before that, we introduce Fair [11], a multi-job schedul-
ing algorithm across geo-distributed DCs, to our FaaS setup
and rewrite its objective function. To this end, we use the para-
metric model in [45] to provide rough performance estimates.

• Aquatope [16] is a general serverless Resource Manager
(RM) that searches for suitable allocation for warm-start
stages to satisfy the workflow’s SLO, via a uncertainty-
aware Bayesian optimization method. Note that we inte-
grate Fair as its function scheduler.

• Astrea [17] is a serverless analytics RM that configures
resources for stages with end-to-end limits. It employs a
shortest-path algorithm over a DAG composed of config-
urable parameters. We extract the sub-algorithm aligned
with our goal and add Fair as its scheduler.

• Ditto [18] is a state-of-the-art serverless analytics sched-
uler that configures elastic parallelism for each stage with
greedy placement jointly, thereby reducing data shuffling
overhead to optimize for JCT and cost.

• Pheromone [6] natively offers a data locality-aware func-
tion scheduling. Also, it greedily allocates the minimum
but valid amount of resources to functions.

Metrics. We focus on two metrics: normalized JCT (a.k.a,
SLO bias) and cost to evaluate the performance of Demeter.
For a given job, the former is measured JCT / SLO, which is
higher for more critical SLO violations. The JCT is defined as
the duration from the job’s arrival time to the completion of its
last function. Regarding the latter, we measure the aggregated
monetary cost across all component functions in the job.

B. Performance of Demeter
We compare the overall performance of Demeter in cost and

SLO compliance against the baselines. Each function requires
at least 1 CPU core and the lowest memory satisfying (13). The
loss factor α is set to 0.8. The resource prices for each region,
as discussed in Section III-C2, follow the AWS Lambda [19]
and EC2 [27] pricing models. Note that the CPU allocation on
Lambda adheres to a ratio (i.e., 1.728GB/core) of the memory
limit. We thus set the per-core price as 1.728× that of per-GB
memory in the same region. Besides, the orchestration interval
(timeout) is set to 5 seconds, with a batch size limit of 20.
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Fig. 13. The overall performance under the 8-agent cluster setting.

1) Overall Performance: Fig. 12(a) and 13(a) show the re-
sults in 4- and 8-agent (DC) clusters with 2 and 4 coordinators,
respectively. The 4-agent with normal mode tests 64 jobs
containing more than 3000 functions, while the 8-agent with
burst mode tests 128 jobs covering over 5000 functions. As
shown, only Demeter consistently stabilizes the JCT around
the corresponding SLO and performs well in cost-saving under
both cluster settings, due to its unique fine-grained function
orchestration. Specifically, it decreases average cost by up to
45.3% and 46.6%, respectively, compared with the baselines.
Part of the gap is due to the higher non-execution costs caused
by numerous functions being stranded, especially with the 8-
agent cluster. Note that the stage-granular scheduling in Ditto
struggles to effectively reduce data transmission overhead and
cost over WAN, leading to lower performance than the base-
lines with Fair (i.e., Astrea and Aquatope). Aquatope considers
uncertainty in the system, similar to ours, and thus outperforms
other baselines. Nevertheless, it confines configuration search
to warm-start functions, which makes it non-trivial to handle
unexpected cold-start from bursty stages, resulting in inferior
SLO compliance under the 8-agent cluster.

Fig. 12(b) and 13(b) show the distribution of SLO bias ac-
cordingly. Demeter outperforms all baselines, ensuring better
SLO compliance with relatively smaller performance fluctua-
tions. It can eliminate another 23.7% and 36.7% of SLO vio-
lations compared with the second-best Aquatope, respectively,
bringing the total down to below 15%. In contrast to Astrea,
Aquatope’s low cost comes with the risk of a high violation
magnitude, despite a relatively low SLO violation rate. This
is due to its active allocation search without explicit penalties,
which tends to prioritize minimal cost when jobs are deemed
unlikely to finish on time. Ditto does not account for resource
sharing across jobs, leading to resource under-utilization. This
is because different stages could not overlap in time, leaving
resource idle during non-overlapping periods. Moreover, Ditto
has to select higher parallelism to mitigate straggler functions
within stages, which further exacerbates resource wastage and
significant SLO violation in frequency and magnitude.

2) Resource Efficiency: Given the correlation between JCT
and cost, we further analyze whether Demeter actually saves
cost by improving resource efficiency. Fig. 14 shows the mean
memory usage per stage under the 8-agent cluster. Note that
we include the resource overhead of the solutions themselves
in the measurement. As shown, Astrea requires memory over-
provisioning to expedite the compute-intensive data analytics
functions. This is because it allocates CPU cores with a fixed



IEEE/ACM TRANSACTIONS ON NETWORKING 13

0 100 200 300 400
0

2

4

6

8
M

e
a
n
 M

e
m

o
ry

 U
s
a
g
e
 (

G
B

)

Timesteps

 Demeter    Aquatope

 Astrea    Pheromone

Fig. 14. The long-term mean mem-
ory usage.

64 128 256 512
1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 C

o
s
t 
($

)

# of Jobs

Demeter Astrea Ditto

Aquatope Pheromone 

Fig. 15. The mean cost under vary-
ing numbers of jobs.

MAPPO MAPPO+Ps Demeter* Demeter*+Pr Demeter
0

20

40

60

80

T
im

e
 O

v
e
rh

e
a
d
 (

%
 I
n
te

rv
a
l)

Methods

 Inference  

 Communication

3
3
4
5
m

s

6
7
1
m

s

6
2
3
m

s1
2
8
0
m

s

1
9
1
5
m

s

Fig. 16. The orchestration overhead
under various algorithm settings.

0 100 200 300 400
0

25

50

75

100

Timesteps

 Demeter
 Demeter*+Pr
 Demeter*
 MAPPO+Ps
 MAPPO

#
of

 A
ct

iv
e 

Fu
nc

tio
ns

Fig. 17. The function stacking un-
der various algorithm settings.

40 60 80 100 120 140
100

110

120

130

140

150

160

C
o
s
t 
(%

 O
ra

c
le

)

SLO (s)

 Demeter

 Astrea

 Aquatope

(a) TPC-DS Q94.

40 50 60 70 80
100

110

120

130

140

150

SLO (s)

C
o
s
t 
(%

 O
ra

c
le

)

 Demeter   

 Astrea            

 Aquatope

(b) BigData Q3.

Fig. 18. The cost guarantee for two typical workloads.

proportion of the memory capacity. In contrast to Aquatope,
which uses a similar decoupled configuration, Demeter strikes
a better balance by scaling this approach to each function. It
neither stacks large redundant resources to satisfy SLOs, nor
opts for cheap configurations to cut costs. Last but not least,
Pheromone significantly increases the resource occupancy time
of jobs, without our low-overhead MARL orchestrator. This in
turn leads to high costs, despite its minimal allocation.

3) Scalability: To evaluate the scalability of Demeter, we
change the number and mode of job arrivals under the 8-agent
cluster. The results are shown in Fig. 15 and 20, respectively.
Note that Aquatope and Ditto perform better with the slow
mode and small-scale jobs. For Aquatope, its pre-warm con-
tainer pool has more margin to improve the hit rate of warm-
starts. For Ditto, more stages from different jobs may run in
overlap to mitigate resource idleness. With the bursty-parallel
nature of jobs, however, Ditto is more likely to delay partial
stages due to resource starvation, resulting in increased non-
execution costs. This is because the free-standing parallelism
configuration gradually shrinks their available resource spaces
in theory, as the job scale increases. Moreover, static Astrea
is non-sensitive to the environment and its instability mainly
arises from the inherent noise. In contrast, Demeter exhibits no
notable performance degradation with different job scales. It
also reduces the average cost and SLO violation by over 23.7%
and 10.6%, respectively, under various job arrival modes. Our
performance benefits from the efficiency of our MARL model
trained with sufficient workloads.

C. Performance Guarantees
We evaluate the effectiveness of Demeter against the SLO-

aware baselines in providing performance guarantees. We track
the trajectories of two typical workloads (TPC-DS Q94 and
BigData Q3) on the 8-agent cluster. Note that the former has
more stages and pronounced changes in intermediate data.
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Fig. 19. The SLO guarantee for two typical workloads.

1) Cost Guarantee: We vary the SLO constraint to evaluate
the cost guarantee of Demeter. As shown in Fig. 18, Demeter
exhibits superior cost-effectiveness across both jobs, achieving
savings ranging from 20.8% to 62.7% compared to the second-
best Aquatope. When the SLO is relatively low, the cost gap
between Demeter and the baselines is larger in Q94 than in Q3,
due to the wide variety of function demands. Astrea can break
up large jobs into multi-round executions, resulting in slightly
lower performance degradation than Aquatope. These results
highlight Demeter’s efficiency in handling jobs with complex
topologies and SLO constraints. When the SLO is relatively
high, all algorithms perform well. Overall, Demeter maintains
stabilized performance and achieves costs within 10.1% of the
optimal Oracle, which exhaustively explores the configuration
space without any performance fluctuations.

2) SLO Guarantee: We also evaluate the SLO guarantee of
Demeter, as depicted in Fig. 19. Similar to the cost, Demeter
is capable of guaranteeing SLO for both jobs. When we relax
the constraint, the SLO bias remains relatively stable, denoting
that Demeter can adapt to varying requirements. However, the
baselines struggle to accelerate jobs to satisfy stringent SLOs
(e.g., < 80 seconds for Q94), even with a high cost. When the
SLO is relatively loose, the actual bias decreases abruptly. This
is because the optimization goal has shifted to cost. Shrinking
costs does not further increase JCT.

D. Deep Dive of Demeter
We evaluate the effectiveness of Demeter components with

the following methods with different incremental techniques:
• MAPPO [36]: A vanilla MAPPO algorithm that orches-

trates pending functions in an FCFS manner.
• MAPPO+Ps: The MAPPO with pointer-score network.
• Demeter∗ [46]: The MAPPO+Ps with hierarchical GNNs,

i.e., the preliminary version of our work.
• Demeter∗+Pr: The Demeter∗ with pruning mechanism.
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Fig. 20. The average cost and SLO violation with varying arrival modes.
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Fig. 21. The overall performance among various algorithm settings.

1) Ablation Evaluation: As shown in Fig. 21, MAPPO+Ps
outperforms due to the multi-negotiated function placement by
exploring their correlation. However, it inputs stacked features
of pending functions and DCs to each agent, thus struggling
to make efficient policies on this redundant state space. With
the pointer-score network and hierarchical GNNs, Demeter∗

reduces the mean cost by 40.1% and SLO violation by 63.5%
compared to MAPPO. Demeter∗+Pr drops the sampling prob-
ability of un-suitable allocations via the pruning mechanism.
Further, Demeter alleviates unnecessary waiting costs due to
function congestion while also sparing some jobs potentially in
SLO violation. It outperforms Demeter∗ by 14.6% in average
cost and 9.4% in SLO violation.

2) Orchestration Overhead: Low-latency is vital for Deme-
ter to be applied in real-world systems. Fig. 16 measures the
orchestration time in inference and communication. Demeter is
significantly accelerated with the compact state and decoupled
action spaces. The inference time is further reduced by pruning
the score model to narrow down the configuration pool. While
DoP tuning requires synchronization across agents, it aims to
hold functions within a “wave”, and does not bring notable
communication pressure. In general, the orchestration time is
quite tolerable relative to the interval. Coupled with the sub-
second absolute time (671ms), this further showcases the fast
orchestration potential of Demeter in wide-area settings.

Resource overhead is another key factor. Fig. 22(a) shows
the normalized resource usages. By applying HTGNN on the
deployment graph, function information is aggregated across
DCs along the edges. This not only decreases state processing
overhead by compressing space, but also enhances scalability
via GNN. Also, the pointer-score network decouples the joint
actions to prevent merging into a huge decision space. Coupled
with the pruning, it effectively reduces the compute complexity
and overhead of agents. Thus, the resource demand of Demeter
does not increase significantly as the number of DCs grows.
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Fig. 22. The resource usage and throughput with varying numbers of DCs.

3) Throughput: Demeter handles the function requests that
scale with the number of DCs due to its distributed orchestra-
tion. However, it effectively avoids significant communication
and scheduling bottlenecks, due to low orchestration overhead.
As depicted in Fig. 22(b), Demeter thus can achieve sublinear
scalability in terms of throughput.

4) Function Stacking: As Fig. 17 shown, the job arrivals are
accompanied by the delayed triggering of numerous functions.
With the DoP tuning, Demeter relieves function congestion by
orchestrating triggered stages in the current “wave”. Moreover,
other techniques can also alleviate function stacking to varying
degrees by enabling early execution.

VIII. RELATED WORK

Serverless systems. Serverless computing attractes stateful
and parallel offerings, due to fine-grained elasticity and billing.
Many systems [6], [20], [22], [47] with distinct architectures
are devised to fill the gap between stateless functions and state-
ful computing. To enhance data locality, SAND [47] places all
functions in an application-level sandbox, and Wukong [22]
partitions its DAG by execution path, assigning each path to a
container. Nevertheless, this function fusion [21] expands the
allocation granularity and blocks on-demand scalability across
stages. In contrast, Demeter merges only paths with the same
partition layout at the function granularity, without influencing
the fine-grained orchestration. In addition to mapreduce-based
analytics jobs, Demeter can be extended to general serverless
workflows as they also have DAG statements with dependen-
cies and event-driven nature [15], [48].

(Geo-distributed) serverless analytics. Geo-distributed an-
alytics in traditional systems [14] optimize JCT or WAN costs
by task scheduling [11], [12] or data placement [10], [49]. Due
to the limitations of serverful architecture, they cannot manage
task granularity like Demeter. In the serverless context, while
some studies [50], [51] deploy functions across regions, they
are not specific to complex analytics jobs. More research on
serverless analytics in a single region [13], [7]. For instance,
Astrea [17] finds the optimal allocation for an analytics job
with budget and SLO demands based on the holistic modeling
and graph theory. Kassing et al. [45] consider factors unique to
serverless analytics, as we do, to make the trade-off between
JCT and cost with Pareto optimal. Ditto [18] determines the
optimal parallelism distribution across stages, and places stage
groups to minimize shuffle traffic. However, they more or less
ignore varying function performance, and do not orchestrate
at the function granularity. Other works [4], [48], [52] deploy



IEEE/ACM TRANSACTIONS ON NETWORKING 15

functions at the network edge, and take network variations and
resource limits into account. These works are not yet suitable
for large-scale query services across DCs.

SLO-aware resource allocation. StepConf [15] configures
function steps (i.e., stage) dynamically based on the critical
path in the job DAG. Aquatope [16] also considers uncertainty
to optimize cold-start and resource allocation for stages using
Bayesian models. While they aim to achieve end-to-end goals
similar to ours, they do not consider the performance impact of
function placements. WiseFuse [21] bundles parallel functions
within stages and enables in-container CPU sharing to mitigate
their execution time skew. However, it is only suitable for co-
located functions. Since Mao et al. [35], [53] integrated Deep
Reinforcement Learning (DRL) for multi-resource scheduling
in data processing clusters, DRL for systems has attracted a
surge of attention. Yu et al. [25] employ DRL algorithms to
harvest idle resources and alleviate function slowdown in FaaS
systems. Qiu et al. [26] propose MARL with SLO violation
and resource utilization as part of the reward in multi-tenant
platforms. Our solution is different from [25] and [26], since
Demeter focuses on orchestrating functions with dependencies
in analytics jobs across DCs, rather than a series of relatively
independent functions in a single-region cluster.

IX. CONCLUSION

This paper proposes Demeter, a fine-grained function or-
chestrator that jointly decides the per-function placement and
resource allocation for geo-distributed serverless analytics. The
goal is to enhance cost savings while ensuring the job’s end-to-
end SLO. Specifically, it utilizes a MARL algorithm with scal-
able state representation and decoupled action encoding, along
with a pruning mechanism. In addition, we tackle the potential
function congestion by enabling elastic parallelism. Extensive
experiment results validate that Demeter can effectively exploit
wide-area resource elasticity. It reduces by up to 46.6% on cost
and over 23.7% on SLO violation, outperforming the state-of-
the-art solutions.
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