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Abstract

Smart devices of everyday use (such as smartphones and
wearables) are increasingly integrated with sensors that pro-
vide immense amounts of information about a person’s daily
life such as behavior and context. The automatic and unobtru-
sive sensing of behavioral context can help develop solutions
for assisted living, fitness tracking, sleep monitoring, and sev-
eral other fields. Towards addressing this issue, we raise the
question: can a machine learn to recognize a diverse set of
contexts and activities in a real-life through joint learning
from raw multi-modal signals (e.g. accelerometer, gyroscope
and audio etc.)? In this paper, we propose a multi-stream tem-
poral convolutional network to address the problem of multi-
label behavioral context recognition. A four-stream network
architecture handles learning from each modality with a con-
textualization module which incorporates extracted represen-
tations to infer a user’s context. Our empirical evaluation sug-
gests that a deep convolutional network trained end-to-end
achieves an optimal recognition rate. Furthermore, the pre-
sented architecture can be extended to include similar sensors
for performance improvements and handles missing modal-
ities through multi-task learning without any manual fea-
ture engineering on highly imbalanced and sparsely labeled
dataset.

Introduction
The problem of context recognition is centered on inferring
person’s environment, physical state, and activity performed
at any particular time. Specifically, a understanding of the
user’s current context requires determining where and with
whom the person is? and in what type of activity the per-
son is involved in? The behavioral and activity analysis is
an important and challenging task mainly because it is cru-
cial for several applications, including smart homes (Rashidi
and Cook 2009), assisted living (Lin et al. 2015; Rashidi and
Mihailidis 2013), fitness tracking (Rabbi et al. 2015), sleep
monitoring (Lin et al. 2012), user-adaptive services, social
interaction (Lee et al. 2013) and in industry. In particular,
an accurate recognition of human context can greatly ben-
efit healthcare and wellbeing through automatic monitoring
and supervision of patients with chronic diseases (Lara and
Labrador 2013) such as hypertension, diabetes and demen-
tia (Ordóñez and Roggen 2016). Furthermore, the gathered
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Figure 1: Multi-modal representation learning from sen-
sors: Schematic of the proposed multi-stream convolutional net-
work.

knowledge and extracted activity patterns can enable novel
treatment design, adjustment of medications, better behav-
ioral intervention and patient observation strategies (Lorincz
et al. 2009).

In practice, for a context detection system to be effective
in a real-life requires an unobtrusive monitoring. It is im-
portant to not distress a person in order to capture their re-
alistic behaviors in a natural environment. The penetration
of smart sensing devices (e.g. smartphones and wearables)
that are integrated with sophisticated sensors in our daily
lives provides a great opportunity to learn and infer about
various aspects of a person’s daily life. However, there is
considerable variability in the human behavior in real-world
situations that can cause the system to fail, if it is devel-
oped using data collected in a constrained environment. For
instance, Miluzzo et al. shows that the accuracy of activity
classification differs based on the interaction with the phone
e.g. when in hand or carried in the bag. The various sensors
embedded in the smart devices convey information about
different ambient facets each with a distinct prospect. The
variability issues of different patterns in phone usage, envi-
ronments, and device types can be very well addressed (to
improve the recognition capability of the system) through
learning disentangled representations from a large-scale data
source and fusing rich sensory modalities rather than sepa-
rately utilizing each of them.

In the past, several studies have shown great improvement
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(a) Audio (MFCC) (b) Accelerometer (c) Gyroscope

Figure 2: Context recognition dataset: Samples from large-scale multi-modal sensory data collected in-the-wild conditions. The indi-
vidual plots within each sub-figure correspond to the same set of activities/context.

in sensor processing for basic activity recognition (Lara
and Labrador 2013; Hoseini-Tabatabaei, Gluhak, and Tafa-
zolli 2013). The majority of the earlier methods use shallow
learning classifiers (such as, Random Forest and Support
Vector Machine) with hand-engineered features extracted
from raw sensor readings e.g. heuristically selected statis-
tical or frequency measures (Figo et al. 2010). Likewise,
many studies involve simulated controlled trials for data col-
lection in lab environments that require users to wear ex-
tra sensors. Broadly, they also treat activity recognition as
a multi-class classification problem, where a user’s activity
at a specific moment can be defined by one of the k defined
classes. On the contrary, people are not generally engaged
in just one activity in their day-to-day living e.g. a person
might surf the web while eating or talking to friends. These
problems limit the applicability of these studies to detect
very few rudimentary activities and make it harder for the
system to generalize to real-life settings. Nevertheless, to
be successful in everyday scenarios, the context recognition
module should support a diverse set of activities, varying de-
vice usage, and a wide range of environments. Importantly,
it must not only learn discriminative representations directly
from raw signals without any ad-hoc feature engineering,
but also seamlessly combine the discovered explanatory fac-
tors in the milieu of diverse sensory modalities (Bengio,
Courville, and Vincent 2013).

In recent years, the fields of speech recognition, drug dis-
covery, image segmentation and machine translation have
been tremendously revolutionized thanks to the availability
of massive labeled datasets and end-to-end deep representa-
tion learning (Bengio, Courville, and Vincent 2013). Sim-
ilarly, the domain of human activity recognition has also
started leveraging deep neural networks for automatic fea-
ture learning (Ordóñez and Roggen 2016; Radu et al. 2018;
Yang et al. 2015) though commonly restricted to the detec-
tion of only elementary activities such as, walking, sitting,
standing etc. There has not been the same progress in rec-
ognizing complex behavioral context in daily-life situations
using devices of daily use. This can be partially attributed
to the lack of a large labeled dataset, which is both expen-
sive and time-consuming to accumulate in a real-world set-
tings. We believe that large-scale sensory data can signif-
icantly advance context recognition. This issue is very re-
cently addressed in (Vaizman, Ellis, and Lanckriet 2017;
Vaizman, Weibel, and Lanckriet 2018) which has open-

sourced multi-modal data (see Figure 2) of activities in-the-
wild. The authors provide a baseline system for sensor fu-
sion and a unified model for multi-label classification. They
trained logistic regression and fully connected neural net-
works on hand-crafted features that are extracted based on
extensive domain-knowledge. In this paper, we utilize this
heterogeneous sensors data collected over a week from sixty
users to learn rich representations in an end-to-end fashion
for recognizing multi-label human behavioral context.

The task of learning detailed human context is challeng-
ing, especially from imbalanced and multi-label data. Un-
constrained device usage, a natural environment, different
routines, and authentic behaviors are likely to result in a
joint training dataset from several users with significant class
skew (Vaizman, Weibel, and Lanckriet 2018) and missing
labels. Another challenge with learning from multi-modal
signals is developing an architecture that feasibly combines
them as in diverse environments a certain sensor might per-
form better than others. For instance, if a person is watch-
ing a television with a phone lying on the table, the sound
modality may dominate in the network as compared to an
accelerometer. We address the former issue with instance
weighting scheme same as (Vaizman, Weibel, and Lanck-
riet 2018) and later through a unified architecture that can
efficiently fuse representations in multiple ways.

We present a deep temporal convolutional neural net-
work (CNN) that learns directly from various modalities
through a multi-stream architecture (accelerometer, gyro-
scope, sound and phone state networks). Here, a separate
network facilitates learning from each modality and a con-
textualization module incorporates all the available informa-
tion to determine the user’s context (see Figure 1). In our ex-
periments, we show that deep multi-modal representations
learned through our network without any sophisticated pre-
processing or manual feature extraction achieve state-of-the-
art performance.

The primary contribution of this paper is in showing how
to leverage ample amount of raw sensory data to learn deep
cross-modal representations for multi-label behavioral con-
text. Although, the methods in the paper are standard, their
application on a large-scale imbalanced and sparsely labeled
smartphone data set is unique. The proposed network ar-
chitecture achieves sensitivity and specificity score of 0.767
and 0.733, respectively averaged over 51 labels and 5-folds
cross-validation. The rest of the paper describes our tech-



nique and experiments in detail. First, we review the related
work on activity recognition. Then we present our multi-
stream temporal convolutional network, architectural modi-
fications for handling missing sensors, the proposed training
procedure and implementation details. Next, the description
of the dataset, evaluation protocol and experimental results
are described, followed by the conclusions.

Related Work
Human activity recognition has been extensively studied
in simulated and controlled environments. It is concerned
with classifying sensor measurements into existing activity
categories. The earlier techniques are predominantly based
on applying shallow learning algorithms on manually ex-
tracted features (e.g. statistical and spectral attributes) (Figo
et al. 2010). Despite there are unsupervised (Bhattacharya
et al. 2014; Plötz, Hammerla, and Olivier 2011) and su-
pervised (Yang et al. 2015; Ordóñez and Roggen 2016;
Ronao and Cho 2016; Zeng et al. 2014) deep learning meth-
ods applied for automatic feature extraction to detect activi-
ties, these approaches are fairly limited by the amount of la-
beled data (of many sensing modalities) from the real-world.
Furthermore, they do not fully address the issue of multi-
label context recognition. A user state is described by only
one class or label, which is not true for activities humans per-
form in real-life. Moreover, only recently the exploration has
begun into joint-learning and fusing multiple modalities for
ubiquitous sensing through deep networks (Radu et al. 2018;
Vaizman, Weibel, and Lanckriet 2018). The works cited here
are by no means an exhaustive list, but provide a recent
representative advancements made in utilizing deep neu-
ral networks for activity recognition. We recommend the
interested readers to refer (Rashidi and Mihailidis 2013;
Shoaib et al. 2015) for an extensive survey of former ap-
proaches.

A systematic analysis of several deep neural architectures
for activity recognition is provided by Hammerla, Hallo-
ran, and Ploetz. The suitability of various models is inves-
tigated that were trained only on raw accelerometer sig-
nals for different activity classification tasks. On diverse
benchmark datasets, CNN and long-short-term memory net-
works are found to outperform hand-crafted features by a
significant margin. Likewise, Alsheikh et al. proposed an
approach combining pre-training and fine-tuning of deep
belief networks for sequential activity recognition. They
extracted spectrograms from a triaxial accelerometer and
found them to be helpful for capturing variations in the in-
put. Similarly, Jiang and Yin used 2D activity images ex-
tracted from accelerometer signals as CNN input. The im-
portance of unsupervised training of models in feature learn-
ing and optimization is highlighted in (Bhattacharya et al.
2014) using a combination of sparse-coding framework and
semi-supervised learning. Likewise, Yang et al. developed a
multi-channel CNN model to replace heuristic based hand-
crafted features. Their analysis showed CNNs work well
compared to traditional (shallow) learning algorithms on
several datasets. Audio sensing is also employed in uncon-
strained acoustic environments through applying fully con-
nected neural networks (Lane, Georgiev, and Qendro 2015).

Recently, Radu et al. used deep networks for multi-modal
activity recognition and compared them with traditional
learning algorithms on various recognition tasks. Likewise,
numerous other studies also positively utilize deep learning
for detection of basic activities (Ordóñez and Roggen 2016;
Ronao and Cho 2016; Zeng et al. 2014).

We differentiate ourselves from the existing approaches
through utilizing a deep multi-stream CNN (with depth-
wise separable convolutions) on a large and diverse con-
text detection dataset. Specifically, we build on previous
work by Vaizman, Weibel, and Lanckriet that only em-
ployed hand-engineered features for training linear and shal-
low neural networks. In contrast, our general-purpose ap-
proach allows us to train a deeper network that can not only
automatically discover hidden latent factors, but also seam-
lessly combine them to achieve an end-to-end learning sys-
tem without requiring domain expertise. Moreover, through
taking advantage of multi-task learning (Caruana 1997) we
develop an architecture that can robustly handle missing sen-
sors.

Learning Multi-Modal Networks
We design a deep convolutional neural network to address
the problem of behavioral context recognition through learn-
ing representations from raw sensory inputs. To deal with
cross-modality signals i.e. accelerometer (Acc), gyroscope
(Gyro), audio (MFCC/Aud), and phone state (PS), we use a
multi-stream architecture. The network comprises five main
modules as demonstrated in Figure 3. This section describes
each component, presents a strategy to modify the proposed
architecture to handle missing sensors and provides the im-
plementation details.

Modality Specific Networks
We present a deep multi-modal convolutional architec-
ture for learning context representations. We propose to
use a series of depthwise-separable convolutions (DPS-
Conv) (Chollet 2017) for processing different components
(or channels) of raw signals. In general, CNNs are also found
to be well suited for processing 1D sequences due to their
ability to learn translation invariant features, scale separa-
tion, and localization of filters across time and space (Bai,
Kolter, and Koltun 2018). DPS-Conv consists of two opera-
tions i.e. a depthwise convolution and a pointwise (or 1 x 1)
convolution. Specifically, the first function (depthwise con-
volution) performs a convolution independently over each
input channel and it is followed by the second operation of
1 x 1 convolution that projects the channels estimated by the
earlier onto a distinct channel space to have the same num-
ber of output filters (Kaiser, Gomez, and Chollet 2017). The
intuition of this formulation falls in line with the classical
procedures utilized by domain experts to extract several fea-
tures from each signal component independently (e.g. x, y
and z constituents of an accelerometer) but pointwise convo-
lution goes one step further and tries to learn unified factors
that may capture relationships among independent elements.
Moreover, separable convolutions make efficient use of pa-
rameters as opposed to their classical counterpart and this
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Figure 3: End-to-end multi-modal and multi-label context recognition: We propose a deep temporal convolutional architecture
for multi-label behavioral context recognition. A separate network learns representations (features) from each modality using depthwise-
separable convolutions and contextualizes this information through shared layers to infer the user context.

property has made them a very promising candidate for con-
temporary architectures that run on smart devices with lim-
ited computing and energy capabilities (Sandler et al. 2018;
Zhang et al. 2017). Formally, in case of 1D input sequence x
of length L with M channels, the aforementioned operation
can be formulated as follows (Kaiser, Gomez, and Chollet
2017):

DepthwiseConv(x,w)i =

L∑
l

(x[i : i + k − 1]�w)l

PointwiseConv(x,w)i =

M∑
m

(x[i : i + k − 1] ·w)m

DepthwiseSeparableConv(x,wd,wp)i =

PointwiseConvi(DepthwiseConvi(x[i : i+ k− 1],wd),wp

where � is elements-wise product, x[i : j] represents a seg-
ment of the complete sequence with adjacent columns from
i to j, and w represents filter with receptive field size of k.

The proposed network takes four different signals as in-
put, each with its independent disjoint pathway in the earlier
layers of the network. Towards the end, they are merged into
shared layers that are common across all modalities that are
described in the next subsection. This network configuration
has the benefit of not just extracting modality-specific (and
channel-specific) features but it can also feasibly extract mu-
tual representations through shared layers. Each of the pre-
sented Acc and Gyro networks consist of 2 temporal convo-
lution layers which act as feature extractors over raw signals
of dimensions 800 x 3. The convolution layers have kernel
sizes of 64 and 32 with a stride of 2 and each layer has 32 and
64 filters, respectively. We use rectified linear activation in
all the layers and apply depth-wise L2-regularization with a

rate of 0.0001. The audio network takes mel frequency cep-
stral coefficients (see Section Dataset and Modalities) of size
420 x 13 as input and it has a similar architecture except the
kernel size, which is set to 8 and 6 in the first and second lay-
ers, respectively. Likewise, the discrete attributes indicating
PS are fed into a single layer fully-connected (FC) network
with 64 units and L1-penalty is used on the weights with
a rate of 0.0001. Furthermore, we explore different mech-
anisms to get a fixed dimension vector from each modal-
ity that can be fed into a shared network. Specifically, we
use: a) global max pooling (GMP), b) global average pool-
ing (GAP), c) a FC layer, and d) exactly pass the representa-
tions without any transformation to the shared network.

Shared Network (Contextualization)
Given the concepts extracted from each modality, the
shared network generates a modal-agnostic representation.
To achieve this, we fuse the output of earlier networks ei-
ther through concatenation or apply standard convolution
(only for Acc, Gyro and Aud). We then feed the output into
2 FC layers having 2048, 1024 hidden units, respectively.
Same as earlier, we use rectified linear non-linearity and
L1-regularization with a weight decay coefficient of 0.0001.
The final output layer contains 51 units (one for each label)
with sigmoid activation. Figure 3 visualizes the sharing of
the network layers, where, earlier layers are modality spe-
cific but downstream layers become more general.

Missing Sensors
In a real-life setting, a context recognition system may en-
counter missing modalities which can limit its inference ca-
pability. To make the model robust against such a situation,
we develop a multi-task network (Caruana 1997), where
learning from each sensor is posed as a task. The initial con-
figuration of the model is the same as before but an addi-



tional layer (of 128 units for Acc, Gyro, MFCC/Aud and
64 units for PS) with a separate loss function is added af-
ter only a single shared layer of 1024 hidden units. Figure 4
provides a high-level overview of the architecture. We em-
ploy joint-training (with a learning rate of 0.0003) on all the
modalities through aggregating cost functions of each model
in order to get a total loss. This architectural configuration
allows not only to learn independent and shared factors but
enables inference even when any of the sensors is missing.
It does so through averaging (which can be weighted) over
probabilities produced by the individual networks.

Shared 
Layer

Average

Additional 
Task-specific 

Layers

Accelerometer

Gyroscope

Audio (MFCC)

Phone State 

Figure 4: Handling Missing Sensors with a Multi-task
Network: A variant of the earlier defined architecture with ad-
ditional task (modality-specific) layers and a separate loss function
for each modality. It is able to recognize user context even if only
one sensor is producing data and the others are unavailable.

Implementation and Training Details
The networks are implemented in Tensorflow (Abadi et al.
2016) and the models are learned from scratch; initializ-
ing the weights with Xavier technique (Glorot and Bengio
2010). Dropout (Srivastava et al. 2014) is applied on the hid-
den layers with a probability of 0.2. We use the Adam opti-
mizer with a learning rate of 0.0001 (unless mentioned oth-
erwise) and use a batch size of 100. We optimize the model
weights for a fixed number of iterations (i.e. 15000) with
mini-batch stochastic gradient descent and backpropagation
using instance-weighted cross-entropy objective function:

JC =
1

NC

N∑
i=1

C∑
c=1

Ψi,c · LCE(ŷi,c, yi,c)

Lce(ŷ, y) = −[(y log(ŷ) + (1− y) log(1− ŷ))]

where Lce is the binary cross-entropy loss, and Ψ is an
instance-weighting matrix of size N x C (i.e. number of
training examples and total labels, respectively). The in-
stance weights in Ψ are assigned by inverse class frequency.
Likewise, the entries for the missing labels are set to zero, to
impose no contribution in the overall cost from such exam-
ples.

Experimental Results
We conduct several experiments to analyze the capability
of the proposed method. First, we provide a brief descrip-
tion of the utilized dataset and signals. Second, we de-
scribe the evaluation approach and metrics used to determine
the model’s performance on a multi-label and imbalanced
dataset. Finally, we discuss our empirical observations, ef-
fect of different modalities’ representation, comparison of
various procedures to learn shared factors and visualization
of the internal representation.

Dataset and Modalities
We choose to learn discriminative representations directly
from raw Acc, Gyro, Aud/MFCC and PS attributes from
a smartphone because of their wide adoptability and ubiq-
uity. For this purpose, we chose to leverage ExtraSensory
Dataset (Vaizman, Ellis, and Lanckriet 2017) since it is col-
lected in a natural environment from users’ personal devices.
The experimental setup was not scripted but data collec-
tion was performed when participants were busy with their
daily routines to capture varied activities and context com-
binations, in-the-wild conditions. This data source contains
over 300, 000 multi-labeled instances (with classes such as
‘outside’, ‘at a restaurant’, ‘with friends’ from a total of 51
labels) from sixty users. The complete data collection pro-
tocol is described in (Vaizman, Ellis, and Lanckriet 2017).
Here, we provide a high-level overview of the signals that
we used in this study. The samples are collected for 20 sec-
onds duration every minute from tri-axis Acc and Gyro at a
sampling frequency of 40Hz, mel frequency cepstral coeffi-
cients (MFCCs) for 46msec frame are extracted from Aud
recorded at 22, 050Hz. Likewise, several phone state binary
features are also collected such as those specifying, time of
day, battery level, ringer mode and Wi-Fi connection etc.
A few randomly selected samples of these signals are illus-
trated in Figure 2.

We seek to process raw sensory values without manual
feature engineering. Thus, the only pre-processing we ap-
plied is to transform variable length inputs to an identical
temporal length. For this purpose, the MFCCs of environ-
mental audio are repeated (along time dimension) to get
equal size input, this is reasonable for ambient soundscapes
as we are not particularly interested in inferring a specific
sound event. Similarly, the Acc and Gyro samples of varying
sizes are zero-padded and instances, where MFCC length
is shorter than twenty are discarded. Furthermore, we treat
Acc, Gyro and Aud as m-channels inputs (3, 3, and 13 chan-
nels, respectively) as it allows us to efficiently learn indepen-
dent factors from every sensor axis, thus maximally utilizing
the large-scale dataset.

Evaluation and Metrics
Our models are evaluated with five-folds cross-validation
with the same divisions of sixty users as of (Vaizman,
Weibel, and Lanckriet 2018), where training and test folds
contain 48 and 12 users, respectively. For hyper-parameter
optimization, we use nested cross-validation (Cawley and
Talbot 2010) by randomly dividing the training fold data



into training and validation sets with ratio of 80-20. After
hyper-parameters selection, we train our models on the com-
plete dataset of training folds (individually, each time from
scratch) and calculate metrics on the testing folds. Further-
more, it is mentioned earlier that the considered dataset is
highly imbalanced with sparse labels. In this case, simply
calculating naive accuracy will be misleading due to not tak-
ing underrepresented classes into account. Similarly, preci-
sion and f1-score are also very likely to be affected by the
class-skew due to involvement of true positives in the de-
nominator. Hence, we adopt a metric named balanced ac-
curacy (BA) (Brodersen et al. 2010) as used in (Vaizman,
Weibel, and Lanckriet 2018), which incorporates both re-
call (or true positive rate) and true negative rate: BA =
Sensitivity+Specificity

2 . BA can be interpreted as average accuracy
achieved on either class (positive or negative regarding bi-
nary classification). It stays identical to traditional accuracy,
if a model performs equally well on each class but drops to
a random chance (i.e. 50%) if a classifier performs poorly
on a class with few instances (Brodersen et al. 2010). We
calculate BA for each label independently and average them
afterwards to get a trustworthy score of the model’s overall
performance.

Results and Analysis

Analysis of Fusing Multi-Modal Representations: We
quantify the effect of different procedures for getting a fixed
dimension feature vector from each modality-specific net-
work and examine their fusion through different configu-
rations of the shared network. It is important to note that,
we keep an entire network’s configuration same but only
the layers under consideration are changed. Table 1 pro-
vides the averaged (metrics) scores over 51 contextual la-
bels and 5-folds as a result of applying global (max and
average) pooling, using FC layer or simply feeding the ex-
tracted representations to the shared network for further pro-
cessing. For the latter, we explore learning mutual repre-
sentation from Acc, Gyr, and Aud/MFCC through an ad-
ditional standard convolution layer and compare its perfor-
mance with directly using flattened representations. Our ex-
periments suggest that global max pooling (GMP) over each
modality’s features outperforms other utilized techniques;
achieving BA of 0.750 with a sensitivity rate of 0.767. We
believe the reason is that, GMP is capable of picking-up
high-level shift-invariant features, which are most discrim-
inative among others. Figure 5 presents per label metrics for
this network on all the 51 labels in the dataset. Specifically,
we notice majority of the labels have BA score in range of
70%-80%.

Comparison of Convolution Variants: We evaluate the
complete multi-stream model through replacing only DPS-
Conv layers with standard convolution (Std-Conv) in
modality-specific networks. We did not observe major per-
formance differences between the two models as shown in
Table 2. Nevertheless, a model with DPS-Conv should be
preferred because of having lower computational cost than
Std-Conv (Sandler et al. 2018).
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Figure 5: Performance metrics per label of the best per-
forming model (with GMP): The scores are averaged over 5-
folds cross-validation.

Table 1: Multi-modal context recognition: The metrics are
reported for 5-folds cross-validation averaged over 51 class
labels. BA stands for balanced accuracy.

BA Sensitivity Specificity
GMP 0.750 (± 0.012) 0.767 (± 0.015) 0.733 (± 0.016)

GAP 0.748 (± 0.009) 0.753 (± 0.012) 0.742 (± 0.015)

FC 0.744 (± 0.009) 0.735 (± 0.014) 0.753 (± 0.008)

Flattened 0.742 (± 0.014) 0.734 (± 0.029) 0.749 (± 0.007)

Conv 0.738 (± 0.011) 0.725 (± 0.022) 0.752 (± 0.022)

Table 2: Performance evaluation with different convolu-
tion layers.

BA Sensitivity Specificity
Std-Conv 0.751 (± 0.011) 0.750 (± 0.017) 0.751 (± 0.007)

DPS-Conv 0.750 (± 0.012) 0.767 (± 0.015) 0.733 (± 0.016)

Quantifying Modality Influence: To examine the effect
of different combinations of sensors (or features learned



from them) on the recognition capability of the model, we
experimented with training several networks with modified
architectures. Specifically, in this case the model only con-
sisted of layers that are relevant to the signals under consid-
eration e.g. for evaluating models with only Acc, Aud, and
PS, we removed the Gyro network entirely and then trained
it end-to-end from scratch. Table 3 shows the evaluation re-
sults that highlights the importance of joint-learning and fu-
sion of multiple modalities to improve detection rate.

Table 3: Effect of different modalities on recognition per-
formance.

BA Sensitivity Specificity
Acc 0.633 (± 0.011) 0.668 (± 0.027) 0.599 (± 0.017)

Gyro 0.639 (± 0.011) 0.638 (± 0.017) 0.640 (± 0.020)

Aud 0.669 (± 0.024) 0.731 (± 0.028) 0.608 (± 0.025)

PS 0.712 (± 0.005) 0.723 (± 0.011) 0.700 (± 0.013)

Acc, Gyro, PS 0.733 (± 0.010) 0.744 (± 0.021) 0.722 (± 0.014)

Acc, Gyro, Aud 0.708 (± 0.010) 0.722 (± 0.027) 0.693 (± 0.012)

Acc, Aud, PS 0.745 (± 0.013) 0.757 (± 0.025) 0.733 (± 0.015)

Gyro, Aud, PS 0.748 (± 0.012) 0.768 (± 0.014) 0.728 (± 0.014)

All 0.750 (± 0.012) 0.767 (± 0.015) 0.733 (± 0.016)

Fusion and Effect of Missing Sensors: We now evalu-
ate the modified architecture’s predictive performance (pre-
sented in Section Missing Sensors), confronting various
combinations of missing signals. Table 4 provides exper-
imental results showing that the proposed multi-task net-
work can handle lost modalities, achieving similar BA score
as when separate models for each modality are developed
(see Table 3). However, this flexibility comes at the price of
slightly lower BA but makes a model capable of operation
in the face of unavailable sensors.

Table 4: Assessment of multi-task network for handling
missing modalities. Each row provide averaged metrics
score as earlier but only mentioned modalities that are used
for determining user’s context.

BA SN SP
Acc 0.634 (± 0.008) 0.652 (± 0.027) 0.616 (± 0.013)

Gyro 0.619 (± 0.016) 0.632 (± 0.040) 0.606 (± 0.023)

Aud 0.656 (± 0.026) 0.670 (± 0.046) 0.641 (± 0.015)

PS 0.688 (± 0.009) 0.709 (± 0.015) 0.667 (± 0.012)

Acc, Gyro 0.646 (± 0.009) 0.670 (± 0.028) 0.622 (± 0.018)

Acc, Aud 0.687 (± 0.015) 0.695 (± 0.035) 0.679 (± 0.008)

Acc, PS 0.708 (± 0.007) 0.713 (± 0.015) 0.702 (± 0.012)

Gyro, Aud 0.687 (± 0.020) 0.699 (± 0.045) 0.676 (± 0.015)

Gyro, PS 0.708 (± 0.007) 0.719 (± 0.023) 0.696 (± 0.019)

Aud, PS 0.708 (± 0.013) 0.717 (± 0.027) 0.698 (± 0.010)

Acc, Gyro, Aud 0.690 (± 0.012) 0.703 (± 0.031) 0.677 (± 0.011)

Acc, Gyro, PS 0.705 (± 0.007) 0.714 (± 0.023) 0.696 (± 0.019)

Acc, Aud, PS 0.721 (± 0.007) 0.729 (± 0.019) 0.712 (± 0.011)

Gyro, Aud, PS 0.721 (± 0.011) 0.730 (± 0.030) 0.711 (± 0.017)

All 0.720 (± 0.008) 0.728 (± 0.025) 0.712 (± 0.015)

Reliance on Instance Weighting and Regularization:
Our results thus far have been obtained through training a
model with cross-entropy loss. This incorporated instance-
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Figure 6: Assessment of instance-weighting and regular-
ization: We determine the impact of cost sensitive loss function
and regularization (i.e. weight decay and dropout) on the network’s
predictive power. The results labeled under standard are with both
IW and regularization.

weights to handle class-imbalance. To test network’s depen-
dence on the cost sensitive loss function (Jc), we examined a
model’s performance that is trained without it. As expected,
the overall BA score drastically drops to a random chance
(see Figure 6) with worse performance on positive samples
in comparison with the negative ones. Likewise, we also
trained a model without any sort of regularization i.e. remov-
ing dropout, L1 and L2 penalties from the network. The av-
erage recall rate on the held-out testing folds dropped to 0.58
which can be an indication of overfitting the training set.
Hence, incorporating both instance-weighting (IW) and reg-
ularization improved performance significantly in learning
from this imbalanced dataset. However, further work will
be necessary to investigate other techniques for managing
(sparse) rare labels such as oversampling and data augmen-
tation in case of multi-labeled instances.

Visualization: In order to illustrate the semantic relevance
of the learned features, we applied t-SNE (van der Maaten
and Hinton 2008) to project high-dimensional data to 2D
embedding. We take the output of the last FC layer (see Fig-
ure 3) from the shared network by feeding a limited (but
randomly selected) subset of the dataset to extract the em-
beddings. Further, as the data under consideration is multi-
labeled, we identified sets of mutually-exclusive labels (e.g.
Indoors vs. Outside) that can be used to color code the data
points to visually identify meaningful clusters. Figure 7 pro-
vides a visualization for various sets of labels suggesting the
network is able to disentangle possible factors of variation
that may distinguish a class from the rest in large-scale sen-
sory data. Furthermore, to get better insights in the diversity
of the extracted features from each modality, in Figure 8, we
visualize the feature maps produced by the first layer of the
DPS-Conv layer of modal-specific networks.

Conclusions
In this work, we tackled the problem of multi-label be-
havioral context recognition with deep multi-modal con-
volutional neural networks. We propose to train an end-
to-end model for jointly-learning from low-level sensory
data (accelerometer, gyroscope, audio and phone state) of
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Figure 7: t-SNE embeddings: We visualize the mutual features learned through fusion of multiple modalities (from the last layer) in the
shared network. Four sets of mutually-exclusive labels are identified from multi-labeled data to use during final visualization of semantically
related clusters extracted through t-SNE.

(a)

(b)

(c)

Figure 8: Feature Maps from Modality-Specific Net-
works: Illustration of randomly selected (learned) features from
first layer of convolutional networks. (a), (b) and (c) represent out-
puts from Acc, Gyro and Aud models, respectively.

smart devices collected in-the-wild. Our empirical results
demonstrated various strategies for feasibly fusing repre-
sentations learned from different modalities and quantify-
ing their contribution on the predictive performance. We
also showed that instance-weighted cross-entropy loss (as
also leveraged in (Vaizman, Weibel, and Lanckriet 2018))
and regularization schemes enable the model to generalize
well on highly imbalanced (sparsely labeled) dataset. Fur-
thermore, we present a slight modification in the proposed
network’s architecture to handle missing sensors; potentially
taking advantage of multi-task learning. We believe, the pro-
posed methodology is generic enough and can be applied to
other related problems of learning from multivariate time se-
ries. Additionally, potential directions for future work would
involve developing techniques to handle imbalanced multi-
label data, optimal sensor selection to reduce computation
and battery consumption, and incorporating other analogous
sensors to further improve the detection rate.
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