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Abstract

Researchers from various scientific disciplines have attempted to forecast the

spread of the Coronavirus Disease 2019 (COVID-19). The proposed epidemic

prediction methods range from basic curve fitting methods and traffic interaction

models to machine-learning approaches. If we combine all these approaches,

we obtain the Network Inference-based Prediction Algorithm (NIPA). In this

paper, we analyse a diverse set of COVID-19 forecast algorithms, including

several modifications of NIPA. Among the diverse set of algorithms that we

evaluated, original NIPA performs best on forecasting the spread of COVID-19

in Hubei, China and in the Netherlands. In particular, we show that network-

based forecasting is superior to any other forecasting algorithm.

Keywords: Epidemiology, Network inference, Forecast accuracy, Bayesian

methods, SIR model, Time series methods, Machine learning methods

1. Introduction1

In December, 2019, the SARS-CoV-2 virus, which causes the Coronavirus2

Disease 2019 (COVID-19), emerged in the Chinese province Hubei. The number3

of COVID-19 infected cases mainly in China rose dramatically to almost 80,0004

at the end of February. From China, COVID-19 quickly spread throughout the5
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whole world, with almost ten million cases at the end of June, 2020. Many6

countries imposed a nation-wide lockdown to slow down the spread of COVID-7

19. A reliable forecast of the pandemic outbreak is key for targeted disease8

countermeasures and for the appropriate design of an exit strategy to lift the9

lockdown.10

Unfortunately, just as weather forecasts, the prediction of epidemic out-11

breaks is subject to fundamental limits [1]. One aspect is the limited avail-12

ability of data, because epidemic time series are relatively short and carrying13

out medical tests on a large scale is challenging. Also, the final number of in-14

fected cases is highly sensitive to initial perturbations [2]. Nonetheless, many15

methods have been developed and applied to forecast the spread of COVID-19.16

Perhaps the simplest approach is based on fitting the number of infections to a17

sigmoid curve, such as the logistic function [3, 4], Hill function [5] or Gompertz18

function [6]. Using nonlinear regression, the parameters of the sigmoid curve19

can be estimated. For the comparison of prediction algorithms in this work, we20

evaluate the prediction based on the logistic function. The logistic function is of21

particular interest, because the logistic function is the (approximate) solution22

for the number of infected cases [7] in the Susceptible-Infected-Susceptible (SIS)23

epidemic model and the number of removed cases in the Susceptible-Infected-24

Removed (SIR) epidemic model [2, 8].25

By fitting the number of infected cases to a sigmoid curve, we implicitly26

assume that the spread in a particular region is independent of other regions,27

which contrasts the strong interconnectedness of our modern world. Network-28

based techniques take into account the interaction between different regions,29

which is due to the movement of people.30

The interaction can be described by network G with N nodes. Each node i31

in the network G represents a particular region (country, province, municipality32

or city), and the link aij ∈ {0, 1} represents the existence of an interaction from33

region j to region i, specified by a link weight βij denoting the infection proba-34

bility from region j to region i. The self-infection probability within a region i35

is given by βii, which we expect to be dominant over the other infection proba-36
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bilities, because the interaction within a region is stronger than the interaction37

with other regions. The N × N infection probability matrix B, with elements38

βij is, however, unknown and must be derived from past observations of the39

epidemic. We will address this issue in more detail in Section 2.40

Throughout this work, we often use “the number of infected cases”, which41

we understand as “the number of cases reported by local authorities”. The42

asymptomatic individuals, who do not feel sick and even do not know that they43

are infected and infectious, are not reported and can infect others unnoticed. To44

gain understanding of the percentage of asymptomatic cases, a possibility is to45

test the population at random with, for example, a blood test. For COVID-19,46

the fraction of asymptomatic cases is estimated to be as large as 80% [9]. Since47

the number of asymptomatic cases cannot be determined on a daily basis, we48

confine ourselves to the number of reported cases in this work.49

Many scientific disciplines investigate and forecast the spread of COVID-50

19. Statistical approaches are commonly based on Kalman filtering [10] or51

consider Bayesian approaches [11]. Network-based approaches consider aero-52

plane networks, daily commute traffic or cell phone traffic [12]. Data scien-53

tists apply machine learning algorithms, like adaptive neuro-fuzzy inference sys-54

tem [13] or Long Short-Term Memory (LSTM) [14]. Mathematicians perform55

parameter estimation on compartmental models like the Susceptible-Infected-56

Removed model (SIR) [14, 15] or the Susceptible-Exposed-Infected-Removed57

(SEIR) model [16].58

Most epidemic models forecast the number of infected cases as a point fore-59

cast (generally: the mean of a distribution) rather than a complete distribution.60

All models in this work have been designed to provide point forecasts, but can61

be generalised to provide prediction intervals. We discuss this topic further in62

Section 2.63

The focus of this work is the comparison of a diverse set of methods to fore-64

cast the spread of COVID-19, ranging from fitting closed-form epidemic curves65

and comprehensive machine-learning algorithms to network-based approaches.66

We focus on the spread of COVID-19, but we emphasise that all methods can be67
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applied to general epidemic outbreaks. We show that pure machine-learning and68

network-agnostic algorithms or epidemiological models are inferior to algorithms69

which combine multiple approaches that rely on the underlying network topol-70

ogy. In particular, the Network Inference-based Prediction Algorithm (NIPA)71

is superior to any other algorithm that we have evaluated. In Section 2 we ex-72

plain eight forecast algorithms to predict the future number of COVID-19 cases.73

Thereafter, we show their accuracy in two selected regions: Hubei (China) and74

the Netherlands in Section 3 and discuss the strengths and weaknesses of each75

algorithm. Finally, we conclude in Section 4.76

2. Prediction algorithms77

The spread of COVID-19 can be measured in terms of the daily number of78

reported cases. We model the course of the epidemic by an SIR compartmental79

model, where each individual is either Susceptible (healthy), Infected (can in-80

fected the susceptible) or Removed (recovered or died). We denote the (discrete)81

time by k = 1, ..., n where n is the total number of observation days. The first82

COVID-19 case was reported on day k = 1. Given that nearly all governments83

report their epidemic data once a day, we take a time step of 1 day as a natural84

choice and investigate the effect of the time step on the prediction accuracy85

in Appendix G. The Susceptible-Infected-Removed (SIR) epidemic model with86

time-varying spreading parameters is given by:87

Definition 1 (SIR Epidemic Model [8, 17, 18]). The viral state vi[k] = (Si[k], Ii[k],Ri[k])T

of every region i evolves in discrete time k = 1, 2, ..., n according to

Ii[k + 1] = (1− δi)Ii[k] + (1− Ii[k]−Ri[k])

N∑
j=1

βij [k]Ij [k] (1)

Ri[k + 1] = Ri[k] + δiIi[k], (2)

and the fraction of susceptible individuals follows as

Si[k] = 1− Ii[k]−Ri[k]. (3)
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Here, βij [k] ≥ 0 denotes the infection probability from region j to region i at88

time k, and δi > 0 denotes the curing probability of region i.89

The spread of COVID-19 cannot be described exactly by the SIR equations90

(1). The COVID-19 pandemic evolves in continuous time, whereas the SIR91

model (1) evolves in discrete time, with a time step of 1 day. Additionally, the92

SIR model (1) is unable to describe phenomena like personal social distanc-93

ing, nation-wide lockdowns and the availability of vaccinations. Each of these94

model assumptions introduces model errors. Prior to the introduction of sev-95

eral forecasting algorithms, we explain how model errors can be used to obtain96

prediction intervals for the forecasted number of infected cases.97

As described in [19], we obtain the fraction of susceptible Si[k], infectious98

Ii[k] and removedRi[k] individuals in every region i from the observed infections99

yi[k]. We aim to find the best possible forecast ŷi[k] for the cumulative number100

of infected cases yi[k] for every region i and time k. In this work, we discuss101

eight prediction methods.102

2.1. Potential generalisation to prediction intervals103

Before introducing the different prediction methods, we emphasise that this

work focusses on short-term point forecasts. The long-term epidemic behaviour

is very random, and providing forecast intervals is essential to give a complete

picture of the long-term viral spread [20]. Extending the point forecast methods

in this work to prediction intervals is outside the scope of this work. Nonethe-

less, we consider it valuable to conceptually discuss an extension of the SIR

equations (1) to allow for the computation of prediction intervals. Any real

epidemic does not follow the SIR model (1) exactly. Instead, the infection

state Ii[k] evolves from time k to k + 1 as

Ii[k + 1] = (1− δi)Ii[k] + (1− Ii[k]−Ri[k])

N∑
j=1

βij [k]Ij [k] + wi[k], (4)

where wi[k] denotes the model error of region i at time k, see also Appendix A.104

The equations (4) can be used as a basis for prediction intervals with a Monte105
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Carlo approach. Define the N × 1 error vector as w[k] = (w1[k], ..., wN [k])T106

and the N × 1 infection vector as I[k] = (I1[k], ..., IN [k])T for all times k.107

Then, based on equation (4), the past observations I[1], ..., I[n] and the errors108

w[1], ..., w[n − 1], point forecast algorithms provide an estimate of the viral109

state I[k] at future times k > n.110

Conceptually, a prediction interval for the future viral state Ii[k] can be111

obtained by two steps. First, obtain random samples from the distribution112

of the model errors w[1], ..., w[n − 1]. Second, for every sample of the er-113

rors w[1], ..., w[n − 1], obtain a point forecast of the future viral states I[k].114

The prediction intervals for the future viral state I[k] can be obtained from the115

ensemble of point forecasts.116

The details of the outlined method for obtaining prediction intervals are117

beyond the scope of this paper. Two particular challenges are the determina-118

tion of the distribution of the model errors w[k] and the implementation of a119

computationally efficient sampling method.120

2.2. Sigmoid curves121

The logistic function is a well-known example of an epidemiological sigmoid

curve [3, 7]. We assume the cumulative number of infected cases yi[k] in region

i at time k to follow a logistic function:

yi[k] =
y∞,i

1 + e−Ki(k−t0,i)
, (5)

where y∞,i is the long-term fraction of infections, Ki is the logistic growth rate122

and t0,i is the inflection point, also known as the epidemic peak. The parameters123

y∞,i, Ki and t0,i are estimated for each region separately using a nonlinear curve124

fitting procedure, which is explained in Appendix F. Other sigmoid curves, like125

the Hill function and Gompertz function, are also discussed in Appendix F.126

2.3. LSTM127

Recurrent neural networks [21] (RNNs) have been used in various tasks re-128

lated to sequences [22], time series analysis and forecasting, speech recognition129
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or natural language processing [23] and it has been demonstrated they achieve130

state-of-the-art performance. Long Short-term Memory (LSTM) networks [24]131

are specific types of RNNs that resolved the long-standing problem in the past132

for long-term dependencies caused by the difference in input growth which in133

turns leads to vanishing or exploding gradients in neural networks backpropa-134

gation. LSTM introduces additional input, output and optional forget gates as135

interfaces with additional weights on the top of standard input data and hidden136

weights in the standard RNN unit. There are several variations [25, 26] for137

the LSTM networks, just to mention few: with or without forget gate and a138

“peephole connection”; that perform better in one or another task [27]. For the139

internal mechanism between the gates and the exact mathematical relations, we140

refer to [28] or [26]. In this work, we utilize the most common one - an LSTM141

with a forget gate. In the simulations, we use an LSTM with sequence and hid-142

den sizes both equal to four in a single LSTM layer (e.g. it is possible to stack143

few LSTM layers which leads to more overfitting), a learning rate of 0.1 and144

Adam optimizer [29], with mean square error loss in 2000 epochs of training.145

2.4. NIPA146

Network-based approaches take into account the interactions between dif-147

ferent regions. However, the contact network G is unknown (and consequently148

also the infection probability matrix B) and must be inferred from the epidemic149

outbreak. The Network Inference-based Prediction Algorithm (NIPA) was orig-150

inally proposed in [18], and we applied an adaption of NIPA to the spread of151

COVID-19 in Hubei, China [19] and Italy [30]. NIPA consists of two steps.152

First, the underlying infection matrix B is inferred from the epidemic outbreak.153

Second, the infection matrix B and the estimated curing rates δi for every node i154

are used to forecast the outbreak by iterating the Susceptible-Infected-Removed155

(SIR) model on the estimated infection matrix B. Even though NIPA success-156

fully forecasted the spread of COVID-19 in the Chinese province Hubei, the157

underlying infection matrix B cannot be inferred [31].158
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2.5. NIPA on each region separately159

As a benchmark model, we apply NIPA on each region separately, which we160

name NIPA separate. NIPA separate is a machine-learning method based on161

the SIR model, but does not consider the interaction between different regions.162

2.6. NIPA static prior163

The formulation of NIPA can be extended to include knowledge on the un-

derlying contact network. We use a time-independent traffic network (with the

corresponding traffic intensity matrix M) to obtain a prior for the infection

probability matrix B as

Bprior = diag (c1, ..., cN )M. (6)

We explain our motivation for the prior infection matrix Bprior in Appendix

B. The positive scalars c1, ..., cN are unknown and are set by cross-validation.

We assume that the true infection matrix B is normally distributed around

the prior infection matrix Bprior. Based on the prior infection matrix Bprior

and the observations of the COVID-19 spread, we obtain the Bayesian estimate

Bposterior by solving the optimisation problem

Bposterior = argmax
B

Pr
[
B
∣∣y[1], ..., y[n]

]
(7)

s.t.

N∑
j=1

βij ≤ 1, i = 1, ..., N,

where y[k] is the observed N × 1 infection vector y[k] = (y1[k], ..., yN [k])
T

at164

all times k = 1, ..., n. Using the estimated infection matrix Bposterior and the165

estimated curing rates δi for every region i, we forecast the outbreak by iterating166

the SIR model. For details on NIPA static prior, we refer to Appendix C.167

2.7. NIPA dynamic prior168

Many countries have imposed some kind of lockdown, in which the free

movement of people is significantly restricted. Thus, the true contact network G
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Table 1: All algorithms discussed in this paper. *If the algorithm is based on a phenomeno-

logical epidemic process, like the SIR model. **If the algorithm is able to forecast small

perturbations in the global trend. ***If the spread between different regions is considered.

Algorithm Epidemiology* Adaptive** Network***

NIPA X X X

NIPA separate X X ×

NIPA static prior X X X

NIPA dynamic prior X X X

Logistic function X × ×

Hill function X × ×

Gompertz function X × ×

LSTM × X ×

varies over time. We use a time-varying traffic matrix M [k] as an approximation

for the prior infection matrix Bprior[k], whose entries equal

Bprior[k] = diag (c1, ..., cN )M [k] (8)

for all times k. The positive scalars c1, ..., cN are unknown and are set by hold-169

out validation. We propose a Bayesian approach called NIPA dynamic prior to170

estimate the true infection matrix B[k] from the time series of infected cases171

yi[k] and the prior infection matrix Bprior[k]. Using the estimated time-varying172

infection matrix Bposterior[k] and the curing rates δi for each region i, we forecast173

the outbreak by iterating the SIR model. Appendix D explains the technical174

details of NIPA dynamic prior.175

A challenge to NIPA dynamic prior is the unavailability of the contact net-176

work in the future. Hence, we assume the traffic matrix to remain constant177

after the last observation point n: Bprior[n+ k] = Bprior[n] for all k > 0.178

3. Evaluation of the prediction performance179

We evaluate the prediction accuracy of the methods discussed in Section 2180

by forecasting the spread of COVID-19 in a selected number of regions. We set181

9



the maximal forecast horizon to six days, because of the difficulty of predicting182

epidemic outbreaks [2].183

Each prediction algorithm produces a forecast ŷi[k] for the cumulative num-

ber of infected cases yi[k] for every region i at time k. To quantify the predic-

tion error at time k, we use the Symmetric Mean Absolute Percentage Error

(sMAPE)

esMAPE[k] =
1

N

N∑
i=1

|yi[k]− ŷi[k]|
(yi[k] + ŷi[k])/2

, (9)

which is commonly used in forecasting [32]. Furthermore, we quantify the Per-

centage Error (PE)

ePE,i[k] =
yi[k]− ŷi[k]

yi[k]
, (10)

for every region i and time k to investigate over- and underestimations. We184

consider the spread of COVID-19 in two regions: The cities in Hubei, China185

and the provinces in the Netherlands. These regions cannot be regarded as full186

representatives of the spread of COVID-19, let alone general infectious diseases.187

Rather, these regions illustrate the strengths and weaknesses of our methods.188

3.1. Hubei, China189

We evaluate the prediction accuracy first on the Chinese province Hubei. In190

December 2019, the first cases of COVID-19 were detected in Wuhan, the capital191

of Hubei. The first case outside Wuhan was reported on January 21. From192

January 24 onwards, the whole province Hubei was under lockdown, prohibiting193

any non-urgent travels. On February 15, the local government in Hubei changed194

the diagnosing policy, causing an erratic increase in the number of reported cases195

on February 15. Therefore we restrict ourselves to the period from January 21196

to February 14. The reported cases are provided by the Health Commission of197

Hubei [33]. The majority of COVID-19 patients were reported in Wuhan, as198

shown in Figure 1. We have removed Shennongjia from our analysis, because199

of the small number of infections in that region.200

For NIPA static prior, we require a traffic network describing the interactions201

between the cities in Hubei. The Chinese company Baidu provides an estimate202
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Figure 1: The left figure shows the geographical map of Hubei. The darker the city, the more

infections per 100,000 inhabitants on February 14. The three cities with the most infections

on February 14 are displayed on the right.

of the number of commuters between all cities in Hubei on a daily basis [34].203

The static prior is set proportional to the traffic network on January 21, which204

corresponds to day k = 1.205

Figure 2 shows the prediction accuracy over time for different forecast algo-206

rithms. The horizontal axis shows the date d. We have forecasted the disease207

several days ahead in time, using all available information from January 22 until208

d. For example, the right-most point in Figure 2a includes data from January209

22 to February 13 to forecast the situation on February 14.210

The sMAPE error in Figure 2 tends to decrease as time evolves, because a211

growing amount of data is available. Furthermore, the total number of infected212

cases quickly increases, whereas the daily infected cases increase at a lower213

rate, indicating sub-exponential growth [2, 35]. Sub-exponential growth will214

inevitably reduce the sMAPE error, because sMAPE is a relative error metric.215

On the other hand, the prediction accuracy decreases rapidly if the forecast216

horizon is enlarged. Especially the number of cases for five and six days ahead217

in time around February 1 cannot be predicted accurately, which is illustrated218

by Figure 2e and 2f, respectively.219

The logistic function performs generally worse than the other algorithms,220

for which several reasons may exist. First, by fitting a logistic curve, we assume221

the number of cases to follow the SIR model closely [2, 8]. Hence, we do not222
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allow any individual or governmental responses to COVID-19, which typically223

flattens the (logistic) curve. Second, the logistic function ignores the spread224

between regions, which further deteriorates the prediction accuracy. Third, the225

logistic function is symmetric around the epidemic peak at k = t0; the increase226

and decrease of the number of cases around the peak is equal. Most epidemic227

outbreaks of COVID-19 show a rapid increase and a more gradual decrease of the228

daily number of cases. A possible reason is that most lockdowns are enforced229

immediately, whereas lockdown measures are lifted gradually. Occasionally,230

the Hill function [5] and Gompertz function [6] are used to predict epidemic231

outbreaks, because they allow asymmetry around the epidemic peak. In this232

work, we focus on the logistic function because of its relation to the solution of233

the SIR and SIS model, and discuss the Hill function and the Gompertz function234

in Appendix F.235

The performance of LSTM is moderately good, but LSTM fails to find an236

accurate forecast around January 31. Since the time series is the shortest at the237

left part of Figure 2, less data is available to train LSTM. Pure machine-learning238

algorithms are known to yield a lower prediction accuracy than other methods239

if the time series is short [36].240

The prediction accuracy of all NIPA methods in Figure 2 is similar, although241

NIPA static prior is considerably worse around February 4 for the prediction242

of three or more days ahead in time. A possible reason is as follows. The im-243

pact of the nation-wide lockdown on January 24 is captured incorrectly by the244

static prior, whereas the original NIPA method has more freedom to adjust its245

contact network accordingly and NIPA dynamic prior receives a more tailored246

prior to the current situation. Another reason is that the prior network (dy-247

namic or static) may deviate significantly from the true infection matrix. Under248

ideal circumstances, namely that the epidemic outbreak exactly follows the SIR249

model, we show that NIPA static prior outperforms NIPA in Appendix E.250

Figure 2 also shows that the negligence of the network interaction by NIPA251

separate decreases the prediction accuracy compared to NIPA. Hence, a network-252

based approach appears beneficial for forecasting. We summarise the results in253
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Section 4.254
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(a) 1 day ahead
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(b) 2 days ahead
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(c) 3 days ahead
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(d) 4 days ahead
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(e) 5 days ahead
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(f) 6 days ahead

Figure 2: The prediction accuracy for the situation in Hubei, China. The subplots show the

prediction accuracy for a forecast horizon of (a) 1 day, (b) 2 days, (c) 3 days, (d) 4 days, (e)

5 days and (f) 6 days for the prediction algorithms from Section 2.

Another interesting topic is forecast bias: The tendency to systematically255

overestimate or underestimate the true number of infected cases. Using the256

Percentage Error (PE) we estimate the bias for all prediction algorithms for257

region i at time k. The surface error plots in Figure 3 show the Percentage Error258

as a function of time for a 4-days ahead prediction. The logistic function and259

LSTM show the largest deviation around the mean, especially around February260
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1, which is in agreement with Figure 2. Furthermore, Figure 3 illustrates that261

the logistic function and LSTM systematically underestimate the true number262

of cases. On the other hand, NIPA static prior appears to overestimate the263

true number of cases. A possible reason is the following. The static network is264

taken to be proportional to the traffic flow before the lockdown measures. When265

the lockdown is introduced, the static prior remains constant, so the algorithm266

overestimates the true result. After some time, the newly collected data shows267

evidence that the prior is not very accurate, so NIPA static prior ignores the268

prior and uses the data instead, which improves the forecast accuracy again.269

3.2. The Netherlands270

As a second case study, we regard the spread of COVID-19 in the Nether-271

lands. The first case was diagnosed on February 27, who had visited Italy the272

week before. After February 27, the number of cases grew rapidly, as depicted273

in Figure 4. The epidemic peak was observed at the end of March, and the daily274

number of cases has dropped ever since. We consider the spread of COVID-19 on275

a provincial level, for which data is available from the Dutch National Institute276

for Public Health and the Environment, called RIVM [37]. The Netherlands is277

subdivided into twelve provinces, for which the RIVM reports the daily number278

of new infections. Since the number of infected cases increased more gradually279

in the Netherlands than in Hubei, China, the total epidemic period is longer280

and more data points are available. A more gradual increase in the number of281

cases should be beneficial for the prediction accuracy.282

For NIPA static prior, we require a traffic network as an approximation for283

the interaction between the provinces. Statistics Netherlands (Centraal Bureau284

voor de Statistiek) reports the number of people mij working in province i and285

living in province j, averaged over one year [38]. We use the Google Mobil-286

ity Data “Workplaces” to estimate the time-varying traffic network for each287

province in the Netherlands [39]. Google reports the percentage decrease of288

traffic pi[k] on day k in province i compared to an ordinary day between Jan-289

uary 3 and February 6, 2020. During the lockdown, we expect pi[k] < 1 because290
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(a) NIPA (b) NIPA separate

(c) NIPA static prior (d) NIPA dynamic prior

(e) Logistic function (f) LSTM

Figure 3: The surface error plots for a 4-days forecast horizon versus time. The subfigures

show (a) NIPA, (b) NIPA separate, (c) NIPA static prior, (d) NIPA dynamic prior, (e) Logistic

function and (f) LSTM.

of the lockdown measures. Then we construct the time-dependent traffic matrix291

as follows: mij [k] = mij · pi[k].292

The prediction accuracy for the Netherlands is outlined in Figure 5. Before293

April 1, the situation in the Netherlands is similar to Hubei, where the NIPA294

methods perform better, but there exist large deviations in the prediction ac-295

curacy. After April 1, the accuracy of the NIPA methods is nearly identical. In296

other words, the influence of the initial static/dynamic network on the predic-297

tion is small. The main reason is that the NIPA algorithms are trained on a298
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Figure 4: The left figure shows the geographical map of the Netherlands. The darker the

province, the more infections per 100,000 inhabitants on May 19. The four provinces with the

most infections on May 19 are displayed on the right.

growing amount of infection data as time advances. Among the best perform-299

ing methods over the whole period are traditional NIPA and NIPA separate,300

whereas the logistic function and LSTM show the worst performance.301

The prediction accuracy of NIPA separate and NIPA are comparable, except302

at the left-hand side of Figure 5. A possible reason is that the spread of the303

coronavirus is at the beginning mainly dominated by interprovincial interac-304

tions. After the imposing of the lockdown at the end of March, the interaction305

between the provinces is lowered significantly, so the spreading mainly takes306

place within each province.307

4. Conclusion308

We have compared the prediction accuracy of eight algorithms to forecast the309

spread of COVID-19. We summarise the results in Table 2. The error in Table310

2 is obtained by averaging over all sMAPE forecast errors for forecast horizons311

between one and six days. Fitting a sigmoid curve, like the logistic function,312

performs the worst of all methods. The main reasons for the low prediction313

accuracy are the imposed symmetry around the epidemic peak and the negli-314

gence of the interaction between regions. Other sigmoid curves, such as the Hill315
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Figure 5: The prediction accuracy for the situation in the Netherlands. The subplots show

the prediction accuracy (a) 1 day ahead, (b) 2 days ahead, (c) 3 days ahead, (d) 4 days ahead,

(e) 5 days ahead and (f) 6 days ahead.

function and the Gompertz function, perform slightly better than the logistic316

function, but perform worse than most other algorithms. The machine-learning317

algorithm Long Short-Term Memory (LSTM) is not based on any phenomeno-318

logical epidemic processes nor considers provincial interactions. Table 2 shows319

that the prediction accuracy of LSTM is comparable to the Hill and Gompertz320

functions.321

The Network Inference-based Prediction Algorithm (NIPA) is a combination322
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of machine learning, phenomenological epidemiology (SIR model) and considers323

the interaction between different regions. Table 2 illustrates that the prediction324

accuracy of NIPA is considerably better than any other algorithm. Applying325

NIPA for each region separately (NIPA separate) yields a forecast error which is326

comparable to LSTM. We conclude that a network-based approach is beneficial327

for an accurate forecast. We have also shown that choosing a time-varying or328

static prior close to the true contact network may improve the forecast accuracy329

of NIPA. Surprisingly, the inclusion of a time-varying or static prior in NIPA330

on real infection data is not beneficial for the forecast accuracy for the consid-331

ered regions. Among several reasons, the chosen prior might be an inaccurate332

estimate of the true contact network.333

In a practical setting, such as the current COVID-19 pandemic, policymakers334

might prefer to anticipate to a worst-case scenario. In that case, an asymmetric335

error metric that penalises underestimations more significantly than overesti-336

mations may be more suitable.337

Table 2: All algorithms discussed in this paper. The Netherlands is abbreviated as NL. *As

input, each algorithm requires the population size Ni of each region i and a time series of the

infected cases yi[k] in each region i at every time k.

Algorithm Additional input* Error (Hubei) Error (NL) Bias

NIPA - 0.122 0.0381

NIPA separate - 0.129 0.0487

NIPA static prior static network 0.135 0.0384 over

NIPA dynamic prior dynamic network 0.129 0.0429

Logistic function - 0.186 0.0735 under

Hill function - 0.142 0.0531

Gompertz function - 0.141 0.0528

LSTM - 0.160 0.0570 under
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Appendix A. SIR Epidemic Model522

The SIR epidemic model is defined in Definition 1. The COVID-19 pandemic

does not exactly follow the SIR epidemic model. Instead, at every time k, the

fraction of COVID-19 infections in region i obeys

Ii[k + 1] = (1− δi) Ii[k] + Si[k]

N∑
j=1

βij [k]Ij [k] + wi[k]. (A.1)
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Here, wi[k] denotes the model error of region i at time k. Under Assumption 2,523

the model errors wi[k] are identically distributed at all times k and for every524

region i:525

Assumption 2. The model error wi[k] is normally distributed as

wi[k] ∼ N
(
0, σ2

w

)
. (A.2)

Furthermore, the model errors wi[k], wj [k̃] are stochastically independent for all526

times k 6= k̃ and regions i 6= j.527

Assumption 3. For every node i, the curing probabilities satisfy δi ≤ 1, and,

at every time k ∈ N, the infection probabilities βij [k] satisfy

N∑
j=1

βij [k] ≤ 1. (A.3)

Under Assumption 3, the fractions Si[k], Ii[k] and Ri[k] remain in [0, 1] at528

every time k as stated by Lemma 4, which is inspired by [40, Lemma 1] and has529

been proved for time-invariant infection probabilities βij in [19].530

Lemma 4 ([19]). Suppose that Ii[1] ≥ 0, Ri[1] ≥ 0 and Ii[1] +Ri[1] ≤ 1 for531

every node i. Then, under Assumption 3, it holds that Ii[k] ≥ 0, Ri[k] ≥ 0 and532

Ii[k] +Ri[k] ≤ 1 at every time k ∈ N for every node i.533

Proof. We prove Lemma 4 by induction. Suppose that at time k for every node

i it holds that

Ii[k] ≥ 0 (A.4)

and

Ri[k] ≥ 0 (A.5)

and

Ii[k] +Ri[k] ≤ 1. (A.6)
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Under Assumption 3 it holds that 0 ≤ δi ≤ 1 and βij ≥ 0. Thus, we obtain from

the SIR governing equations (1) and (A.6) that both Ii[k + 1] and Ri[k + 1]

equal a sum of positive addends, which implies that

Ii[k + 1] ≥ 0 (A.7)

and

Ri[k + 1] ≥ 0. (A.8)

Furthermore, we obtain for every node i that

Ii[k + 1] +Ri[k + 1] = Ii[k] +Ri[k] + (1− Ii[k]−Ri[k])

N∑
j=1

βij [k]Ij [k].

(A.9)

From (A.4), (A.5) and (A.6), we obtain that Ii[k] +Ri[k] ∈ [0, 1]. Since (A.5)

and (A.6) imply that Ii[k] ≤ 1, it holds that

N∑
j=1

βij [k]Ij [k] ≤ 1 (A.10)

under Assumption 3. Thus, Ii[k + 1] + Ri[k + 1] ≤ 1, since the right side of534

(A.9) is a convex combination of 1 and
∑N
j=1 βij [k]Ij [k] ∈ [0, 1].535

Appendix B. Motivation for the static and dynamic prior536

We intend to give a short motivation for (6). Suppose that each individual

has on average 〈d〉 contacts (here 〈·〉 denotes the average) in the population. If

a person is infected and its neighbours are healthy, the person can infect any

of its neighbours independently with probability p. Hence, the total number of

infections follows a Bernoulli distribution

Pr[m] =

(
〈d〉
m

)
pm(1− p)〈d〉−m. (B.1)

In case 〈d〉 is large and λ ≡ p〈d〉 is small, we can approximate (B.1) by a Poisson

distribution

Pr[m] = e−λ
λm

m!
. (B.2)
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If there are N visiting, infected individuals, which may all infect the population537

independently, the resulting distribution is the sum of independent, identically538

distributed Poisson distributions, which is again a Poisson distribution with539

〈m〉 = Nλ.540

We denote the number of people living in region j and travelling for work to

region i by mij . Each individual has 〈d〉 contacts and can infect each individ-

ual with probability p. Then region j has on average mij〈d〉p new infections,

provided that no two individuals who visit the same region j have contact to

the same people. In particular, the fraction of new infections that region i gets

from region j is given by

βij =
mij〈d〉p
Ni

. (B.3)

If we define ci = 〈d〉p
Ni

, we obtain equation (6).541

Appendix C. Details on NIPA static prior542

We assume that the infection matrix B is normally distributed around the543

prior Bprior, whose elements equal bprior,ij = cimij :544

Assumption 5. Every non-diagonal element βij, where i 6= j, of the matrix B

is normally distributed as

Pr [βij ] =

αi
1√

2πσi
exp

(
− 1

2σ2
i

(βij − cimij)
2
)

if 0 ≤ βij ≤ 1,

0 otherwise.

(C.1)

Here ci denotes the proportionality constant, and the constant αi is set such

that ∫
R

Pr [βij ] dβij = 1. (C.2)

The normal distribution (C.1) is cut off for values outside of [0, 1], since545

the infection probability βij cannot be outside the interval [0, 1]. The standard546

deviation σi is a measure for the accuracy of the prior distribution (C.1). Both547
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the proportionality constant ci and the standard deviation σi are unknown. As-548

sumption 5 implies that the diagonal elements βii of the matrix B are uniformly549

distributed in the interval [0, 1].550

We obtain the estimate Bposterior of the contact network by a Bayesian (or

maximum a posteriori) approach. Given the observed N × 1 infection vector

I[k] = (I1[k], ..., IN [k])
T

at all times k = 1, ..., n, we pose the optimisation

problem

Bposterior = argmax
B

Pr
[
B
∣∣I[1], ..., I[n]

]
(C.3)

s.t.

N∑
j=1

βij ≤ 1, i = 1, ..., N.

With the constraint in (C.3), we ensure that the predictions of the infections

satisfy 0 ≤ Ii[k] ≤ 1, see Lemma 4 in Appendix A. We define the (n − 1) × 1

vector Vi and the (n− 1)×N matrix Fi as [19]

Vi =


Ii[2]− (1− δi)Ii[1]

...

Ii[n]− (1− δi)Ii[n− 1]

 (C.4)

and

Fi =


Si[1]I1[1] ... Si[1]IN [1]

...
. . .

...

Si[n− 1]I1[n− 1] ... Si[n− 1]IN [n− 1]

 . (C.5)

We obtain the Bayesian estimate Bposterior by solving a constrained linear least-551

squares problem. Proposition 6 is an adaptation of the Bayesian interpretation552

in [31].553

Proposition 6. Under Assumptions 2 and 5, the Bayesian estimation problem

29



(C.3) is equivalent to solving the optimisation problem

min
βi1,...,βiN

∥∥∥∥∥∥∥∥∥Vi − Fi

βi1
...

βiN


∥∥∥∥∥∥∥∥∥

2

2

+ ρi

N∑
j=1,j 6=i

(βij − cimij)
2

s.t. 0 ≤ βij ≤ 1, j = 1, ..., N,

N∑
j=1

βij ≤ 1,

(C.6)

for every region i, where the penalisation parameter equals ρi = σ2
w/σ

2
i .554

Proof. The objective function of the optimisation problem (C.3) is equivalent

to

B̂ = argmax
B

log (Pr [B]) +

n∑
k=2

log
(
Pr
[
I[k]

∣∣I[k − 1], B
])
. (C.7)

In the following, we rewrite the two terms in (C.7). First, with (C.1), it holds

that

log (Pr [B]) =


∑N
i=1

∑N
j=1 log (αi)− log

(√
2πσi

)
− 1

2σ2
i

(βij − cimij)
2

if 0 ≤ βij ≤ 1 ∀i, j,

−∞ otherwise.

(C.8)

Neither the term log (αi) nor the term log
(√

2πσi
)

depend on the matrix B.

Furthermore, the prior log (Pr [B]) is finite only if 0 ≤ βij ≤ 1 for all regions

i, j. Thus, the optimisation problem (C.7) is equivalent to

B̂ = argmax
B

N∑
i=1

N∑
j=1

− 1

2σ2
i

(βij − cimij)
2

+

n∑
k=2

log
(
Pr
[
I[k]

∣∣I[k − 1], B
])

s.t. 0 ≤ βij ≤ 1, i = 1, ..., N, j = 1, ..., N.

(C.9)

Second, since the model errors wi[k] are stochastically independent for different
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regions i, we can rewrite the second term in the objective of (C.9) as

log
(
Pr
[
I[k]

∣∣I[k − 1], B
])

=

N∑
i=1

log
(
Pr
[
Ii[k]

∣∣I[k − 1], B
])

(C.10)

=

N∑
i=1

log (Pr [wi[k] = ∆i[k]]) , (C.11)

where the second equality follows from (A.1) and by defining

∆i[k] = Ii[k]− (1− δi) Ii[k − 1] + Si[k − 1]

N∑
j=1

βijIj [k − 1]. (C.12)

Under Assumption 2, the model error wi[k] follows the normal distribution.

Thus, it holds that

log (Pr [wi[k] = ∆i[k]]) = − log
(√

2πσw

)
− 1

2σ2
w

∆2
i [k]. (C.13)

The term log
(√

2πσw
)

is independent of the matrix B. Thus, it follows from

(C.10) and (C.13) that the second term in the objective of (C.9) can be replaced

by

N∑
i=1

n∑
k=2

1

2σ2
w

∆2
i [k] =

N∑
i=1

1

2σ2
w

∥∥∥∥∥∥∥∥∥Vi − Fi

βi1
...

βiN


∥∥∥∥∥∥∥∥∥

2

2

, (C.14)

where the equality follows from the definition of the vector Vi and the matrix Fi

in (C.4) and (C.5), respectively. Hence, the optimisation problem (C.9) becomes

B̂ = argmin
B

N∑
i=1

1

2σ2
w

∥∥∥∥∥∥∥∥∥Vi − Fi

βi1
...

βiN


∥∥∥∥∥∥∥∥∥

2

2

+

N∑
i=1

1

2σ2
i

N∑
j=1

(βij − cimij)
2

s.t. 0 ≤ βij ≤ 1, i = 1, ..., N, j = 1, ..., N.

(C.15)

The problem (C.15) can be optimised independently for every region i. Thus,

we obtain, after multiplication with 2σ2
w, the equivalent optimisation problems

31



for every region i as

min
βi1,...,βiN

∥∥∥∥∥∥∥∥∥Vi − Fi

βi1
...

βiN


∥∥∥∥∥∥∥∥∥

2

2

+
σ2
w

σ2
i

N∑
j=1

(βij − cimij)
2

s.t. 0 ≤ βij ≤ 1, j = 1, ..., N.

(C.16)

By identifying ρi = σ2
w/σ

2
i , we obtain that (C.16) with the constraint

∑N
j=1 βij ≤555

1 is equivalent to the constrained linear least-squares problem (C.6).556

The first term in the objective of (C.6) measures the fit to the observed

epidemic data. The second term measures the deviation of the infection rates

βij from the prior (C.1). The scalar parameter ρi balances the two terms: if the

prior (C.1) is very accurate or the model errors wi[k] are large, then ρi should be

large. The optimal value of the parameter ρi equals to the ratio of the unknown

variances σ2
w and σ2

i of the model errors wi[k] and the prior (C.1), respectively.

The optimisation problem (C.6) is convex and can be solved efficiently [41]. To

obtain the solution to (C.6) numerically, we make use of the Matlab command

lsqlin. We stress the similarity of the optimisation problem (C.6) to the least

absolute shrinkage and selection operator (LASSO) of Tibshirani [42], which is

the basis of NIPA without prior [19]. Instead of the second least-squares term

in the objective of (C.6), LASSO considers the `1-norm penalisation term

ρi

N∑
j=1,j 6=i

|βij | . (C.17)

In fact, NIPA without prior can also be interpreted as a Bayesian estimation557

approach [31].558

Appendix C.1. Pseudocode559

To solve the optimisation problem (C.6) for the infection rates βi1, ..., βiN ,560

we must specify three unknown variables. First, the curing rate δi of region561

i, which determines the fractions Si[k] and Ri[k] of susceptible and recovered562

individuals, respectively [19]. Second, we must specify the parameter ρi. Third,563
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also the proportionality constant ci of the prior (C.1) is not known. We perform564

cross-validation to set the three unknown variables δi, ρi, ci.565

NIPA static prior is similar to NIPA without prior, except for two alterations.566

First, we solve the constrained linear least-squares problem (C.6) instead of567

LASSO. Second, additionally to the parameter ρi and the curing rate δi, for568

Bayesian NIPA there is one more unknown variable, namely the proportionality569

constant ci, which is a parameter of the prior distribution (C.1). To determine570

the constant ci, we consider 50 logarithmically equidistant candidate values in571

the set Ψ = {cmin, ..., cmax}. The minimal and the maximal values are set to572

cmin = 0.01 and cmax = 100, respectively. We set the value of ci by cross-573

validation. To obtain the epidemic outbreak prediction of Bayesian NIPA, we574

execute [19, Algorithm 1], where [19, Algorithm 2] is replaced by Algorithm 1575

stated below.576

Appendix D. Details on NIPA dynamic prior577

We assume that the time-varying infection rates βij [k] are proportional to

the known population flow mij [k]. More precisely, we assume that the infection

rates βij [k] for all regions i, j, when i 6= j, equal

βij [k] = cimij [k] (D.1)

for some unknown proportionality constant ci > 0. Furthermore, we assume the

self-infection probabilities βii do not change over time k. With (D.1), the SIR

model in Definition 1 yields that

Ii[k + 1] = (1− δi)Ii[k] + βiiSi[k]Ii[k] + ciSi[k]

N∑
j=1,j 6=i

mij [k]Ij [k] + wi[k].

(D.2)

Appendix D.1. Maximum-Likelihood Estimation578

To predict the infectious state Ii[k] with (D.2), we must estimate the con-

stants ci, the self-infection probabilities βii and the curing rates δi. We define
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Algorithm 1 NIPA static prior

1: Input: curing probability δi; viral state vi[k] for k = 1, ..., n; infection

state vector I[k] for k = 1, ..., n

2: Output: infection probability estimates βi1(δi), ..., βiN (δi); mean squared

error MSE(δi)

3: Compute Vi and Fi

4: ρmax,i ← 2‖FTi Vi‖∞
5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: Ψ← 50 logarithmically equidistant values from cmin = 0.01 to cmax = 100

8: for ρi ∈ Θi do

9: for ci ∈ Ψ do

10: estimate MSE(δi, ρi, ci) by 3-fold cross–validation on Fi, Vi and solv-

ing (C.6) on the respective training set

11: end for

12: end for

13: (ρopt,i, copt,i)← argmin
ρi∈Θi,ci∈Ψ

MSE (δi, ρi, ci)

14: (βi1(δi), ..., βiN (δi))← the solution to (C.6) on the whole data set Fi, Vi for

ρi = ρopt,i and ci = copt,i

15: MSE(δi)← MSE(δi, ρopt,i, copt,i)
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the N × 1 vectors c = (c1, ..., cN )T and b = (β11, ..., βNN )T . We pose the

estimation problem in a maximum-likelihood sense as

max
c,b

Pr
[
I[1], ..., I[n]

∣∣c, b]
s.t. ci ≥ 0, i = 1, ..., N,

βii ≥ 0, i = 1, ..., N,

βii + ci

N∑
j=1,j 6=i

mij [k] ≤ 1 i = 1, ..., N, k = 1, ..., n.

(D.3)

The last constraint in (D.3) ensures that the predictions of the infections satisfy

Ii[k] ≤ 1, see Lemma 4. From the maximum likelihood problem (D.3) we derive,

for every region i, the LASSO optimisation problem as

min
ci,βii

n−1∑
k=1

Ii[k + 1]− (1− δi)Ii[k]− βiiSi[k]Ii[k]− ciSi[k]

N∑
j=1,j 6=i

mij [k]Ij [k]

2

+ ρi(βii + ci)

s.t. ci ≥ 0,

βii ≥ 0,

βii + ci

N∑
j=1,j 6=i

mij [k] ≤ 1, k = 1, ..., n.

(D.4)

Here, we denote the regularisation parameter by ρi ≥ 0, which aims to avoid579

overfitting. The greater the parameter ρi, the smaller the estimates of the580

coefficients βii, ci. If the regularisation parameter ρi = 0, then solving the581

LASSO (D.4) for every node i is equivalent to solving the maximum-likelihood582

problem (D.3). (The equivalence of the optimisation problem (D.3) and the583

LASSO (D.4) can be derived analogously to Proposition 6.)584

To solve the optimisation problem (D.4) for the constants ci and βii, we585

must specify two unknown variables. First, the curing rate δi of region i, which586

determines the fractions Si[k] andRi[k] of susceptible and recovered individuals,587

respectively [19]. Second, we must specify the parameter ρi. We perform hold-588

out cross-validation to set the unknown variables δi and ρi: The training set589

follows from the first 80% of the observations, and the validation set equals the590
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last 20% of the observations. In pseudocode, NIPA dynamic prior is given by591

Algorithm 2.592

Algorithm 2 NIPA dynamic prior

1: Input: curing probability δi; viral state vi[k] for k = 1, ..., n; infection

state vector I[k] for k = 1, ..., n

2: Output: infection probability estimates βi1(δi), ..., βiN (δi); mean squared

error MSE(δi)

3: Compute Vi and Fi

4: ρmax,i ← 2‖FTi Vi‖∞
5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈ Θi do

8: estimate MSE(δi, ρi) by hold–out cross–validation on Fi, Vi and solving

(D.4) on the respective training set

9: end for

10: ρopt,i ← argmin
ρi∈Θi

MSE (δi, ρi)

11: (βi1(δi), ..., βiN (δi))← the solution to (D.4) on the whole data set Fi, Vi for

ρi = ρopt,i

12: MSE(δi)← MSE(δi, ρopt,i)

Appendix E. NIPA static prior under perfect conditions593

The original NIPA method is known to provide accurate predictions when594

the epidemic perfectly follows the SIR model [19, Supplementary Material 1].595

Here, we intend to show that NIPA static prior performs even better if the prior596

matrix is close to the real infection matrix.597

Suppose we generate data from an SIR epidemic as in Definition 1. We

use a network with N = 10 nodes with an equal curing rate δ for each node:

δi = 0.2 for all i. We set the curing rate δi in the NIPA algorithms equal to the

exact curing rates δi = 0.2, such that both NIPA and NIPA static prior will al-
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ways estimate the curing rates correctly. We consider infection probabilities βij

which are uniformly distributed in the interval (0, 1). The effective reproduction

number R0 can be computed as [43]

R0 = maximum eigenvalue of

(
B · diag

(
1

δ1
, ...,

1

δN

))
. (E.1)

We normaliseB element-wise such that the basic reproduction numberR0 equals

2.0. Furthermore, we set the population size Ni for each region i equal to a

uniformly distributed number in the interval [105, 106] and start with initially

y1[1] = 100 infected cases in node 1 and all other nodes are healthy. Most

importantly, we set the prior infection matrix Bprior equal to the exact infection

matrix B, multiplied by some noise

Bprior,ij = βijwij . (E.2)

Here, wij is uniformly distributed in the interval [1, 2]. The other parameters598

are the same as in the main article.599

The result in Figure E.6 is clear: NIPA static prior is able to capture the600

dynamics much better than NIPA. Hence, we conclude that NIPA static prior601

in combination with a good prior yields a better prediction accuracy than the602

original NIPA method.603

(a) NIPA (b) NIPA static prior

Figure E.6: The prediction for (a) NIPA and (b) NIPA static prior with generated SIR data

based on Definition 1 on a 10-node network.

Appendix F. Sigmoid curves604

In epidemiology, sigmoid curves are commonly used to forecast the future605

number of infected cases.606
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The logistic function was developed by Verhulst in 1845 to explain the growth

of the population in a specific region [3]. The logistic function is the most

often used sigmoid curve in epidemiology, because the logistic function also

follows as the (approximate) solution of the SIS and SIR model [2]. The

logistic function assumes the cumulative number of infected cases yi[k] in

region i and time k to follow

yi[k] =
y∞,i

1 + e−Ki(k−t0,i)
. (F.1)

where y∞,i is the long-term fraction of infections, Ki is the logistic growth607

rate and t0,i is the inflection point, which is also known as the epidemic608

peak.609

The Hill function was introduced in 1910 to describe the binding of molecules

on surfaces [5]. Later, it was successfully applied to describe the spread

of epidemics [44]. The Hill function assumes the cumulative number of

infected cases yi[k] in region i at time k to follow

yi[k] =
y∞,i

1 +
(

Ki

k−t0,i

)ni
, (F.2)

where y∞,i is the long-term fraction of infections, Ki is the Hill growth610

rate, ni is the Hill coefficient and t0,i is the inflection point, also known611

as the epidemic peak.612

The Gompertz function was introduced in 1825 to describe human mortal-

ity in a general population [6]. Later the Gompertz function was also used

to describe the spread of epidemics [45]. The Gompertz function assumes

the cumulative number of infected cases yi[k] in region i at time k to follow

yi[k] = y∞,ie
−cie−aik

, (F.3)

where y∞,i is the long-term fraction of infections, ci is a displacement613

factor (comparable to the inflection point) and ai is the Gompertz growth614

rate.615
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We describe the curve-fitting procedure here for the logistic function, but the

parameters for any curve can be estimated analogously. Suppose that we have a

time series of the cumulative number of reported cases yrep,i[k] for k = 1, . . . , n

and for every region i. Then we minimise the Mean Square Error for each region

separately;

(ŷ∞,i, K̂i, t̂0,i) = min
(y∞,i,Ki,t0,i)

n∑
k=1

(
yrep,i[k]− y∞,i

1 + e−Ki(k−t0,i)

)2

,

s.t. 0 ≤ y∞,i ≤ Ni,

Ki ≥ 0,

t0,i ≥ 0,

(F.4)

where Ni is the population of region i. We evaluate the nonlinear minimisation616

problem (F.4) by the command GlobalSearch in Matlab. As initial conditions,617

we provide y0
∞,i = y(tobs),Ki = 1, t0,i = tobs. The parameters (y∞,i,Ki, ni, t0,i)618

for the Hill function and (y∞,i, ci, ai) for the Gompertz function can be estimated619

analogously.620

Appendix G. The influence of the time step on the prediction accu-621

racy622

In the discrete-time SIR model (1), we use the time step ∆t = 1 day. By ap-623

proximating a continuous-time process (the COVID-19 pandemic) by a discrete-624

time process (SIR model) we make a model error. We investigate the influence625

of the time step on the prediction accuracy, by comparing the NIPA prediction626

accuracy for various time steps, ranging from ∆t = 0.5 days to ∆t = 3 days.627

Since the number of infected cases is (generally) reported once a day, the data628

for the time step ∆t = 0.5 days is obtained by linearly interpolating the number629

of cumulative cases yi[k]. For a time step ∆t = 1 day and ∆t = 0.5 days, we630

smooth the raw data before calling the NIPA algorithm [19].631

For the time steps ∆t = 2 days and ∆t = 3 days, there are two possible632

methods. Method (A) assumes that the cumulative number of cases yi[k] is633

reported every two (or three) days, and is unreported on the intermediate days.634
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Then we smooth the remaining data, whereafter the NIPA algorithm is used. In635

fact, we have omitted the data on the intermediate days. In contrast, method636

(B) first smooths all raw data. Thereafter, we only use the cumulative number637

of cases yi[k] every two or three days for a time step of two or three days,638

respectively. The main difference is that method (A) completely neglects the639

data on intermediate days, whereas method (B) first applies a smoother and640

then neglects the intermediate data.641

Figure G.7 and G.8 show an exemplary situation from the Netherlands for642

three initial dates. The configuration for the time step ∆t = 1 day and ∆t = 0.5643

days is equal in both figures. In the beginning of the COVID-19 outbreak, as644

shown in Figure G.7a for method (A) and Figure G.8a for method (B), the645

prediction accuracy is similar for all time steps. The small amount of available646

data and the rapidly increasing number of cases hampers accurate forecasting.647

As the epidemic evolves, method (A) and method (B) start to deviate. By648

omitting data as in method (A), the sMAPE error in Figure G.7 increases for649

two and three days quicker than for smaller time steps. Hence, removing data650

causes the prediction accuracy to decrease. On the other hand, method (B) in651

Figure G.8 shows similar behaviour for all time steps. We conclude that if the652

amount of data is unchanged, the choice of the time step has limited effect on653

the prediction accuracy.654
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(a) 18 March (b) April 5

(c) April 23

Figure G.7: (Method A: First remove, then smooth) The NIPA prediction accuracy for the

situation in the Netherlands for varying time steps ∆t. The subplots show the forecast for (a)

March 18, (b) April 5 and (c) April 23. For the time step ∆t = 2 days or ∆t = 3 days, the

data is first removed and then smoothed.
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(a) 18 March (b) April 5

(c) April 23

Figure G.8: (Method B: First smooth, then remove) The NIPA prediction accuracy for the

situation in the Netherlands for varying time steps ∆t. The subplots show the forecast for (a)

March 18, (b) April 5 and (c) April 23. For the time step ∆t = 2 days or ∆t = 3 days, the

data is first smoothed and then removed.
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