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Abstract—Stress and accompanying physiological responses
can occur when everyday emotional, mental and physical chal-
lenges exceed one’s ability to cope. A long-term exposure to
stressful situations can have negative health consequences, such
as increased risk of cardiovascular diseases and immune system
disorder. It is also shown to adversely affect productivity, well-
being, and self-confidence, which can lead to social and economic
inequality. Hence, a timely stress recognition can contribute to
better strategies for its management and prevention in the future.
Stress can be detected from multimodal physiological signals
(e.g. skin conductance and heart rate) using well-trained models.
However, these models need to be adapted to a new target
domain and personalized for each test subject. In this paper, we
propose a deep reconstruction classification network and multi-
task learning (MTL) for domain adaption and personalization
of stress recognition models. The domain adaption is achieved
via a hybrid model consisting of temporal convolutional and
recurrent layers that perform shared feature extraction through
supervised source label predictions and unsupervised target
data reconstruction. Furthermore, MTL based neural network
approach with hard parameter sharing of mutual representation
and task-specific layers is utilized to acquire personalized models.
The proposed methods are tested on multimodal physiological
time-series data collected during driving tasks, in both real-world
and driving simulator settings.

Index Terms—physiological stress, domain adaption, person-
alization, multi-task learning, deep learning, temporal convolu-
tional neural networks

I. INTRODUCTION

In today’s society, we experience numerous stressful situ-
ations such as dealing with annual job evaluation, business
failure, or illness. Stress is described as a psychophysiolog-
ical response to mental, emotional and physical challenges
encountered in daily life [1]. Even though the human body
is capable of dealing with short-lived day-to-day stressors,
the long-term exposure to unremitting stress can have de-
structive consequences for well-being, productivity, behavior,
and self-confidence [2; 3]. Stress can also adversely affect
health with implications for progression, recovery, and treat-
ment of nearly every known disease through physiological,
behavioral and cognitive changes [1]. It increases the risk
of diabetes, metabolic disorders, cardiovascular diseases and
(psycho) somatic complaints [4; 5]. Due to these health and
performance issues, stress management becomes important. A
timely detection of stress can be extremely powerful as it can

empower users to take corrective and preventive measures in
an informed manner [6].

The autonomic nervous system (ANS) consists of two
branches, namely, sympathetic and parasympathetic nervous
system which are both influenced by (amongst others) phys-
iological stress and emotional arousal. The activity of the
sympathetic part results in an increase in heart rate, blood
pressure, respiration, and blood flow to the muscles. An
activity of the parasympathetic division results in an increase
in blood flow to the organs and the skin, a decrease in heart rate
and respiration, and an increase in heart rate variability. The
ANS responds to stress by stimulating specified target organs
via efferent neuron tracts, initiated in the locus coeruleus of
the brain stem [7] resulting in a release of noradrenaline and
norepinephrine. The immediate effect thereof is an increase
in sympathetic and a decrease in parasympathetic activity,
resulting in a measurable change in physiological parameters,
such as an increased heart rate (HR) and skin conductance
(SC) level.

Assessing stress levels has a wide area of applications,
from increasing resilience of military personnel to enhancing
athletes’ performance and improving workforce productivity.
Several techniques have been proposed in the past to detect
stress in pilots [8], car and truck drivers [9; 10; 11], computer
users [12], call center employees [6] and in surgeons [13].
In addition to audio-visual modalities, most approaches use
numerous physiological signals, such as respiration rate, elec-
trocardiography (ECG), blood pressure, and electromyography
(EMG). The collection of these data in natural conditions
is very difficult and usually not consumer friendly enough
for practical applications. In contrast, SC and HR can be
reliably acquired in a non-invasive and non-obtrusive way
from wearable sensors placed on the wrist. Currently, the
key challenge is the reliable and personalized classification
of stress-states based on these easy to obtain SC and HR
signals. In the present work, we focus on personalization and
unsupervised model adaption to improve stress assessment
both inside and outside controlled lab environments (domains)
using HR and SC signals.

The development of wearable sensors for electrodermal
activity and heart rate monitoring has boosted the interest
in using these for stress assessment over the last decade.
Several recent works have shown their successful application



with machine learning algorithms to detect stress in different
(mostly controlled) conditions [14; 15; 16]; see [17] for a
detailed survey. The aspect that is evident from the overview
of earlier work is that current methods do not address issues
of end-to-end representation learning, covariate shift, person-
alization, and domain adaption. The traditional supervised
learning algorithms are not robust to dataset bias [18] and
may perform poorly when the data distribution of training
instances (of a source domain) differs from test instances
(of a target domain). For example, a model trained on a
data collected in a simulated (constrained) environment may
not be able to perform well in a real-world (unconstrained)
setting. Hence, these methods require a collection of ground-
truth data (in real-world) for model retraining and are unable
to leverage unlabeled data directly to perform cross-domain
stress classification. Similarly, physiological signals tend to
vary in people and are influenced by age, gender, diet or
sleep [19]. Due to this fact, stress responses can differ from
person to person. The global (or one-fits-all) models, often
do not generalize well to unseen test subjects and hence need
extensive fine-tuning.

To address the aforementioned issues, we propose an end-
to-end representation learning framework based on a deep
reconstruction classification network [20] (DRCN) and multi-
task learning (MTL). We focus on personalization and domain
adaption together as DRCN can be seen as an extension
of MTL. The objective of DRCN is to improve predictive
performance on the target domain through joint training on
labeled and unlabeled data points. It performs shared fea-
ture extraction through supervised source label predictions
and unsupervised target data reconstruction. Specifically, the
reconstruction phase enables the network to adapt the label
prediction function for the target domain, which is similar
to learning an auxiliary task in MTL setting to improve
the performance on the actual task [21]. Likewise, model
personalization can be achieved with MTL, if subjects are
treated as tasks [22]. In this case, the multi-task neural network
has hard (or soft) parameter sharing of mutual representations
along with distinct layers for each subject (or task) to account
for bodily interpersonal differences.

We demonstrate the versatility of the proposed methods via
three datasets from a representative application area i.e. stress
detection in a driving context. Our approach makes no assump-
tion about the sensor types, sampling frequency, and structure
of the physiological time series. It is important to note that
these methods are flexible, they can be applied to a variety of
neural network architectures and can be used for a variety of
different time series classification tasks with minimal changes.
Additionally, DRCN and MTL models learned in an end-to-
end fashion match or improve results obtained through ad-hoc
feature extraction procedures, achieving promising predictive
accuracy without any input from domain experts.

The primary contributions of this work are:
• Using multimodal physiological time-series data from

real-world and simulated driving environments to develop
a stress recognition model with end-to-end representation

learning on the one hand and manual feature engineering
on the other.

• Demonstration of an unsupervised model adaption for
cross-domain transfer using deep reconstruction classi-
fication networks.

• Presenting a robust approach for personalizing a model
with deep multitask neural networks.

II. MODEL

A. Problem Definition

The stress detection (classification or recognition) can be
framed as a sequence (time-series) classification task which
takes physiological signals as input and outputs a label (gen-
erally binary) for each sequence. The raw input signals of
different modalities are divided into segments of fixed length;
with sliding window to avoid semantic segmentation. This
process produces m input-output {(xi, yi)}mi=1 pairs, where
yi is taken to be the mode of context window. The ~xi is either
used directly for learning representations with deep networks
or high-level features are extracted from it manually to learn
a classification model.

B. Unsupervised Model Adaption

We formulate model adaption as a cross-domain and cross-
user transfer learning problem. Here, a model trained on
a dataset collected in a specific setting or source domain
has to be adapted to perform the same task in a different
situation or target domain. The key challenges, in this case,
are a) unavailability of ground-truth for the target domain, b)
expensive process of acquiring a large number of labels, and
c) dynamic shift in data distribution. Therefore, target data
cannot be directly used for fine-tuning an existing model in a
supervised manner. However, the unlabeled target data provide
auxiliary training information that can be leveraged to improve
model generalization on the target domain than using only
source data. This learning setting resembles MTL in the sense
that learning an auxiliary task can help improve performance
for the actual task using a shared representation [21].

Our goal is to transfer knowledge from labeled source
data S to improve classification performance on unlabeled
target data T . Let, XS represent data instances and let YS
be stress labels for the source. Likewise, XT denotes data
points from the target without any labels, YT . In domain
adaption case, the marginal probability distribution of input
data i.e. P (XS) and P (XT ) are different but the set of
classes are the same YS = YT . We used an extension of deep
reconstruction classification network [20] to jointly model
distribution of S and T with a combination of supervised
and unsupervised objectives. The model is based on temporal
convolution and recurrent layers (see Fig. 1). There are two
distinct stages of the source and target feature learning by
having a shared encoding representation. The initial stage
is a hybrid of convolution and recurrent layers for source
label predictions i.e. C : XS → YS . While the subsequent
phase is a denoising convolutional autoencoder for target data
reconstruction i.e. R : XT → XT .
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Fig. 1: Unsupervised (cross-domain) model adaption architecture. The network consists of three main blocks, encoder, decoder and label
classifier, where encoder is shared between autoencoder and label classifier. The target data is reconstructed with encoder/decoder part of the
network, represented by E and D. Similarly, source labels are predicted with the encoder and classifier, showed by E and L. The model is
trained end-to-end with back-propagation using gradient descent (Adam). During optimization, first the weights of classification network (C)
are updated followed by weight optimization of autoencoder (R). Concretely, the labeled source data flow through lower part of the model
whereas, the unlabeled target data passes through upper part of the network.

The encoding phase of the architecture consists of 2 tem-
poral convolution layers each followed by a max pooling
operation with a pool size of 5. The convolution layers all
have 90 feature maps and a filter length of 10 with rectified
linear activation. The decoder architecture is similar except
that the output is upsampled at the same rate as the input is
downsampled in the encoder. The classification network shares
the same encoder but has an additional bidirectional recurrent
layer with 80 units. It is followed by a standard sigmoid layer
to get a binary output. The Gaussian noise with a standard
deviation of 0.1 is added to both source and target instances
and l2-regularization is applied on the encoder’s weights. The
model is jointly optimized with binary classification (LC) and
reconstruction (LR) losses for S and T , respectively. Given
mS source labeled instances {(xi, yi)}mS

i=1 and mT unlabeled
target samples {(xi)}mT

i=1, the objective functions are then
defined as follows:

LCE(ŷ, y) = −
m∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (1)

LMSE(ŷ, y) =
1

m

m∑
i=1

(yi − ŷi)2 (2)

LC = LCE(C(XS ; {ΘE ,ΘL}), YS) (3)

LR = LMSE(R(XT ; {ΘE ,ΘD}), XT ) (4)

LCL = αLC + (1− α)LR (5)

where ΘE , ΘD, ΘL, are an encoder, decoder and label
prediction network weights, respectively. Note that ΘE is
shared between classification network C and autoencoder R.
Likewise, 0 ≤ α ≤ 1 is a trade-off hyper-parameter to control
the contribution of classification and reconstruction losses.

C. Personalization

A subject-independent global model for stress detection
may perform poorly due to large interpersonal variations in
physiological parameters [19] e.g. due to age, gender, sleep,
and diet. In order to take these disparities into account, we
personalize a model by applying deep multi-task learning
(MTL) with the subjects-as-tasks approach [22]. MTL involves
finding a unified model for solving more than one task with a
shared representation of the tasks. Consequently, a multi-task
neural network (MT-NN) consists of common layers across
tasks as well as task-specific layers. Besides, the last layer
contains a separate output unit and a loss function for each
task. The optimization of loss functions is done at the same
time by alternating between different tasks at random.

We use two model architectures for the MTL setting,
one based on the temporal convolutional neural network for
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Fig. 2: Multi-task convolutional neural network architecture. The
network consists of two temporal convolution and an average pooling
layers along with a dropout which acts as the shared feature extrac-
tors. The separate convolution and dense layers are used as private
layers for each participant with a sigmoid unit in the last. The model
input is a 3d tensor of raw physiological signals of fixed length. It
is trained end-to-end with back-propagation and gradient descent by
alternating between tasks (subjects) at random (see Sec. III-D).

end-to-end representation learning (see Fig. 2) and another
feed-forward neural network trained with manually extracted
features. In the former, the first three layers act as the shared
feature extractors among the tasks (see Fig. 3). They have 96
features maps with a kernel size of 8 and average pooling
of size 5. A separate convolution and fully connected layers
are employed as subject-specific layers to learn personalized
features. The private convolution layer has the same config-
uration as shared ones but the dense layer has 512 hidden
units with tanh activation. In the latter, a fully-connected layer
with 200 units is used as a shared layer, whereas a separate
hidden layer with 100 units is used as a private layer for each
subject. In both cases, the last part contains a sigmoidal layer
with standard binary cross-entropy loss function (see Eq. 1)
for each user. We use rectified linear activation in every layer
(unless mentioned otherwise) and apply l2-regularization and
dropout with a rate of 0.0001 and 0.2, respectively, to avoid
over-fitting.

This model architecture will be able to take interper-
sonal variations in physiological signals into account through
person-specific layers, rather than; having a mutual global
representation. Likewise, we perceive personalization for new
unseen user straight-forward through adding randomly initial-
ized layers to an existing model. In this case, our architecture
can be seen as an instantiation of Progressive Neural Net-
works [23]. The newly-added layers can be attached to existing
shared layers; while dropping or chaining the private layers
for knowledge transfer. The user-specific layers can then be
optimized while keeping weights of shared layers frozen or
tuning them separately with very small learning rate. This
training strategy provides an additional benefit as the data
from earlier users/tasks are not necessarily required to train
a personalized model from scratch.
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Fig. 3: Multi-task neural network architecture. The model consists
of one shared layer (with hard-parameter sharing) and a (private)
user specific dense layer with sigmoid classifiers in the last layer.
The input is a vector of 16 physiological features, extracted from the
heart rate and skin conductance manually (see Sec. III-D).

III. DATASET AND PRE-PROCESSING

We use skin conductance and heart rate signals from real-
world and simulator driving datasets. The details are discussed
below:

A. MIT Driver Stress (M)

The MIT Driver Stress dataset [24] consists of physiological
signals recorded from 17 drives in a real-life experiment;
when participants drove in a city, on a highway and rested
in a garage. The collected signals comprise of EMG, ECG,
galvanic skin response (GSR) from hand and foot, HR derived
from ECG and respiration rate. The signals provided in the
dataset are all down-sampled to 15.5 Hz. We used the ‘marker’
signal (a button press) to derive the ground-truth annotation
for binary stress levels. The peaks are detected in the signal
to capture the button push event; indicating a new trial of
the experiment is commencing, e.g. the start or end of a rest
period. The data points before and after the first and last mark-
ers (peaks) are removed as they correspond to the time when
subjects were equipped with sensors. Likewise, 4 minutes of
data after resting and before the beginning of the post driving
baseline are removed. These steps are taken to avoid feeding
signals with ambiguous labels, as it is hard to determine if
subjects are stressed or recuperated. The artifacts are removed
from HR and GSR signals following [25] as values fluctuated
to unreasonably high and low levels. Likewise, ECG, GSR
from foot and respiration rate are not used as collecting them in
real-world situations is very problematic. Lastly, the following
10 drives dataset having valid HR, GSR from hand, and marker
signals are used for further experimentation: 04, 05, 06, 07,
08, 09, 10, 11, 12 and 16.

B. Distracted Driving (D)

The multimodal Distracted Driving dataset [26] is acquired
on a simulator in a controlled environment. The dataset
includes data from 68 volunteers (35 male/33 female) that
drove the same highway under four different conditions: a) no



interruption, b) cognitive distraction, c) emotional distraction,
and d) sensorimotor distraction. In addition to the driving
indicators (such as speed, brake force, and steering) and eye
tracking; several physiological signals were recorded. These
include palm electrodermal activity (EDA), HR, breathing rate,
and perinasal perspiratory signal. We normalize EDA (dividing
by 1000) as a pre-processing step to ensure the same range
of variability compared to other data sources. In this research
as our focus is on detecting cognitive load stressors, we used
only the EDA and HR data (provided with a sampling rate
of 1 Hz) from drive under normal and cognitive mental load.
During a cognitive load drive, the stressors were induced by
mathematical and analytical questions posed verbally by the
experimenter. We used 40 participants for our analysis and
dropped the rest due to corrupted or missing signals either
during a normal or a stressful drive.

C. Cognitive Load Driving (C)

We collected heart rate and skin conductance (SC) data
from 19 professional truck drivers using wrist-worn devices.
The SC signal was recorded at a frequency of 10 Hz and
HR was derived from Photoplethysmogram sensor data with a
frequency of 1 Hz; it was upsampled to match the frequency
of SC. The experiment was realized with a driving simulation
software and participants received standardized instructions
from an audiotape. The study consisted of three major steps 1)
baseline driving, 2) moderate stress activity, and 3) high-stress
task. The high stress was induced by means of a secondary
arithmetic subtraction task. It is a component of widely used
Trier Social Stress Test [27], where a user has to perform a
serial subtraction verbally in a loud manner and has to start
over from the last correct answer; if a mistake is made. Since
we are interested in recognition of baseline and high stress,
data points of moderate stress activity are dropped. Also, two
subjects are dropped due to having bad quality signals.

D. Segmentation and Features

To prepare the data for model input, we used a sliding
window approach as mentioned earlier to extract fixed-length
sequences from each participant’s physiological signals. A
window length of 300 samples with a fixed step size of 50
samples is used for each dataset. In the case of end-to-end
representation learning, raw physiological signals are used. For
traditional learning algorithms, features are extracted manually
from HR and SC which is discussed below. It is important to
note that raw segments and features were computed from pre-
processed signals, standardized with mean normalization by
baseline to compensate for individuals having different resting
heart rates.

Heart Rate: Heart rate is the number of complete cardiac
cycles for instance measured as the R-R interval in an electro-
cardiogram. It reflects the heart activity, including autonomic
nervous system activity when it accommodates the body’s
demands depending on the received stimuli [10]. We obtained
the following seven features from heart rate: mean, standard

deviation, min, max, range, root mean square of successive
differences, and standard deviation of successive differences.

Skin Conductance: The skin conductance (also known as
galvanic skin response or electrodermal activity) describes the
autonomic variations in electrical properties of the skin or
equivalently, the number of active sweat glands. It is widely
used as a sensitive index of emotional processing, sympathetic
activity and is a relevant indicator of the stress level of a
person [28; 29]. From this signal, the following nine features
are extracted: mean, standard deviation, min, max, range,
number of peaks, amplitude, skewness, and kurtosis.

IV. EXPERIMENTS

Our experiments were conducted using physiological signals
from three datasets described in Section III: MIT Driver Stress
(M) [24], Distracted Driving (D) [26] and Cognitive Load
Driving (C). The data of every subject in each dataset is
randomly divided into training, validation and test sets of size
70%, 10%, and 20%, respectively. For each experiment, the
networks are trained from scratch, initializing the weights with
the Xavier technique [30]. We use the Adam [31] optimizer
with the default parameters but used the validation set to find
optimal learning rate and trade-off parameters (α). The optimal
values of α are found to be between [0.2-0.7]. Finally, we
employ validation based early stopping during the optimization
process to further avoid over-fitting and improve the stress
recognition rate.

We evaluated DRCN for model adaption on six com-
binations (source S → target T ) of the above mentioned
datasets: C → M, C → D, D → C, D → M, M → D
and M → C and report kappa and area under the receiver
operating curve (AUROC) on the held-out test set. For a
baseline, we used a CNN model trained only on source data
with architecture similar to the encoder part of the model as
discussed in Sec. II-B. Furthermore, we also experimented
with feed-forward networks trained with manually extracted
features for both DRCN and source-only settings. The feed-
forward models consist of 3 hidden layers with 128, 64 and 32
units with tanh activation, where the decoder network has a
similar configuration but layers in opposite order to reconstruct
the original input vector of 16 dimensions. The results are
summarized in Table I. The DRCN model trained end-to-end
demonstrates a strong performance boost for the unsupervised
cross-domain transfer learning problem. It achieves kappa of
above 0.7 from the simulator to on-road and vice-versa from
source-only baseline kappa of 0.6. It is important to note
that, we used a fixed architecture for all six combinations of
model adaption tasks to show predictive performance increase
via joint training on source and target. We believe further
improvement can be achieved if architectural components (e.g.
number of kernels, kernel size, activation) are optimized for
each adaption task separately. Likewise, convolutional models
trained end-to-end outperformed those with an ad-hoc feature
extraction procedure. This can be due to CNN’s capacity
and ability to automatically learn general to specific features
from source and target domains together. Although, when



TABLE I: Test set Kappa and AUROC score for unsupervised (cross-domain) model adaption

Kappa

Methods C → D C → M D → C D → M M → C M → D
Source Only - NN 0.040 0.640 0.371 0.604 0.470 0.148
Source Only - CNN 0.246 0.648 0.389 0.566 0.594 0.401
DRCN - NN 0.110 0.215 0.527 0.192 0.491 0.186
DRCN - CNN 0.541 0.656 0.747 0.701 0.774 0.432

AUROC

Methods C → D C → M D → C D → M M → C M → D
Source Only - NN 0.521 0.826 0.760 0.781 0.780 0.575
Source Only - CNN 0.619 0.827 0.765 0.755 0.827 0.701
DRCN - NN 0.563 0.628 0.807 0.610 0.798 0.598
DRCN - CNN 0.772 0.830 0.844 0.831 0.867 0.713

the target domain is Distracted Driving, the domain adaption
performance is comparatively low. This could be due to the
relatively small size of this dataset and the recognition rate
can be improved with a larger dataset.

In our attempt to personalize the model, we first evaluated
two standard classifiers as a baseline: logistic regression (LR)
and support vector machine with linear (L) and radial basis
function (RBF) kernels. In addition, we also trained two layers
(subject independent) feed-forward neural network with 100
hidden units and rectified linear activation in each layer. The
data of each subject is randomly divided into (80/20) train and
test sets. The cross-validation is performed on the training
set for hyper-parameter optimization and evaluation metrics
are averaged across participants on the test set. The stress
recognition performance of these models is summarized in
Table II, III and IV for real-world and simulator drivings,
respectively. In MIT Driver Stress (on-road) dataset, SVM
(RBF) set a strong baseline by achieving the highest re-
sults among other single-task models including ST-NN. The
proposed MT-CNN model greatly improved upon that by
achieving kappa of 0.84 and AUROC score of 0.91. It can
be seen as an overall improvement across drivers due to
subject-specific layers. Likewise, the MT-NN model which
is trained with manually extracted features achieved similar
results. Nevertheless, we advise caution in the interpretation
of MIT Driver Stress dataset’s result as no actual ground truth
annotations or subjective self-reports are publicly available.
The labels were acquired by means of a ‘marker’ signal,
representing the start of next study trial (i.e. from resting to
driving in a city) and assuming that driving, in general, is a
stressful task.

For simulator driving datasets, the standard (one-fits-all)
classifiers do not generalize as can be seen from the high
standard deviation values of evaluation metrics in Table III
and IV. The difference is particularly high for the Distracted
Driving dataset, where a number of participants were compar-
atively large and more diverse belonging to different gender
and age groups. The MT-NN notably improved the recognition
rate across subjects and resulted in a better model by achieving
kappa of 0.91 and 0.81 on both simulator datasets. Similarly,
MT-CNN performed well apart from on Distracted Driving
dataset which can be attributed to its small size as deep models
require large datasets for representation learning. However,
these results show that multi-task learning with reliable quality

TABLE II: Average test set (20%) results of drives in MIT Driver
Stress dataset

Model AUROC Kappa
LR 0.821 ± 0.074 0.650 ± 0.143
SVM (L) 0.832 ± 0.076 0.675 ± 0.146
SVM (RBF) 0.894 ± 0.035 0.808 ± 0.062
ST-NN 0.852 ± 0.116 0.707 ± 0.241
MT-NN 0.905 ± 0.056 0.831 ± 0.098
MT-CNN 0.918 ± 0.058 0.841 ± 0.110

TABLE III: Average test set (20%) results of participants of Cog-
nitive Load Driving dataset

Model AUROC Kappa
LR 0.880 ± 0.161 0.745 ± 0.314
SVM (L) 0.876 ± 0.141 0.740 ± 0.264
SVM (RBF) 0.923 ± 0.104 0.853 ± 0.252
ST-NN 0.935 ± 0.072 0.855 ± 0.142
MT-NN 0.960 ± 0.056 0.911 ± 0.114
MT-CNN 0.956 ± 0.080 0.918 ± 0.147

TABLE IV: Average test set (20%) results of users in Distracted
Driving dataset

Model AUROC Kappa
LR 0.734 ± 0.215 0.473 ± 0.431
SVM (L) 0.735 ± 0.217 0.472 ± 0.429
SVM (RBF) 0.882 ± 0.152 0.760 ± 0.909
ST-NN 0.860 ± 0.166 0.715 ± 0.334
MT-NN 0.908 ± 0.140 0.814 ± 0.282
MT-CNN 0.871 ± 0.127 0.738 ± 0.257

signals can be used to develop a personalized model as it gen-
eralizes well across various users and different environments
i.e. real-world and simulators.

V. CONCLUSION

In this work, we proposed a solution for unsupervised cross-
domain adaption and personalization of physiological stress
recognition models with deep multi-task learning (MTL). The
traditional learning approaches used for stress detection mostly
(see [17] for a review) rely on sensor data (such as EMG,
respiration rate, facial expressions and pupil dilation) that
are very hard to acquire in a real-life situation to develop
practical applications. Likewise, they do not explicitly address
issues of end-to-end representation learning, covariate shift,
and domain adaption. Therefore, these methods may perform



poorly when data distribution (of a source domain) training
instances differs from test instances (of a target domain). Simi-
larly, global subject-independent models do not generalize well
to new test subjects because of large interpersonal variations
in physiological parameters of individuals which can be due
to age, gender, sleep, and diet. We used skin conductance
and heart rate from real-world and simulator driving tasks to
show: a) how models can be adapted to improve predictive
performance on target domain in an unsupervised manner
with deep reconstruction and classification networks (DRCN)
and b) how to utilize multi-task learning (with subjects-as-
tasks) to get personalized stress models. In our experiments,
we found that the convolutional neural network based DRCN
model outperforms the models trained only on source data and
feed-forward networks utilizing manually extracted features.
Likewise, in model personalization experiments, the MTL
networks either trained end-to-end or with feature extraction
procedures significantly improve the recognition rate across
all datasets as compared to single-task models. We believe, if
a wearable device provides reliable and high-quality signals,
a real-time stress detection application can be developed to
improve safety and well-being. In addition to stress classifi-
cation in a driving environment, a future study may involve
applying and investigating the performance of these methods
in a daily-life context by comparing the model’s outputs
against subjective self-reports.
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