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The continuous-time Susceptible-Infected-Susceptible (SIS) epidemic model (ASIS) and the adap-
tive information diffusion (AID) are two adaptive spreading processes on networks, in which a link
in the network changes depending on the infectious state of its end-nodes, but in opposite ways: (1)
In ASIS, a link is removed between two nodes if exactly one of the nodes is infected to suppress the
epidemic, while a link is created in AID to speed up the information diffusion; (2) A link is created
between two susceptible nodes in ASIS to strengthen the “healthy part” of the network, while a link
is broken in AID due to the lack of interest in information-less nodes.

ASIS and AID may be considered as first-order models for cascades in real-world networks. While
the ASIS model has been exploited in the literature, we show that the AID model is realistic by
obtaining a good fit with Facebook data. Contrarily to the common belief and intuition for such
similar models, we show that ASIS and AID exhibit different, but not opposite properties. Most
remarkably, a unique metastable state always exists in ASIS, while there are “sand-clock shaped”
region of instability in AID. Moreover, the epidemic threshold is a linear function in the effective
link-breaking rate in AID, while it is almost constant but noisy in the AID model.

PACS numbers: 89.75.Hc, 87.10.Ed, 89.75.Fb

Over the last decade, many real-world networks have
been characterized via graph metrics [1–3] such as clus-
tering, assortativity, modularity, degree distribution and
spectral properties. Recently, robustness characteristics
and complex dependencies have been analyzed in net-
works of networks [4], while a parallel track in network
science focuses on relatively simple dynamic processes on
networks such as epidemics [5, 6], synchronization [7] and
opinion diffusion [8–10]. In most studies so far, the net-
works are considered fixed or independent of the dynamic
process. After the seminal work of Gross et al. [11], the
coupling between epidemic processes and the underlying
network topology has been extensively studied [12–15].

The coupling between process and topology is natural
in many cases. In epidemics [16], for example, after the
observation of an infectious relative, one may either avoid
him/her (by changing the social contact network) or in-
crease the protection against the virus (without altering
the topology). In human brain networks, Hebbian learn-
ing alters the connectivity between brain regions that
are trained or neurally excited. Although self-adaptation
naturally occurs in biology, adaptive networks, in which
the process interacts with the topology, are unfortunately
difficult to analyze and we barely understand the inter-
play between process and topology. Twitter measure-
ments [17, 18] show that the topology of the network
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adaptively changes connectivity towards users with high
popularity and the “ordinary users” tend to directly fol-
low the “popular ones” to get the information faster, in-
stead of awaiting the retweets from their current friends.

Gross et al. [11] have spotted complex patterns dur-
ing the evolution of the adaptive network through the
healthy, the oscillatory, the bistable and the endemic
state. Extensions of Gross’s analysis are presented in
[19–25]. Instead of a discrete-time model with a unique
re-wiring rate in [11, 22], here, we present two continuous-
time models, the continuous-time Adaptive Information
Diffusion (AID) and the Adaptive Susceptible-Infected-
Susceptible (ASIS) model, with separate link break-
ing and creating rates. The two seemingly similar epi-
demic models, both representing real-world appearances
but with opposite topology dynamics, surprisingly, ex-
hibit a completely different stability of the metastable
state. Moreover, the two models possess a different scal-
ing of the epidemic threshold, while the properties of the
metastable topologies show similar, but phase rotated
shapes. Interestingly, our analysis does not resort to
mean-field approximations, taking into account the topo-
logical and epidemic variations of the nodes.

The epidemic (information) dynamic in the two
models is based on the standard Susceptible-Infected-
Susceptible (SIS) epidemic process [26]. We describe the
ASIS process, while the terminology for the AID model is
given in brackets. The epidemic (information possession)
state of node i in a networkG withN nodes is specified by
a Bernoulli random variable Xi(t) ∈ {0, 1}: Xi(t) = 1, if
node i is infected (posses the information) and Xi(t) = 0,
otherwise. At time t, a node i is infected (posses the in-
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formation) with probability Pr[Xi(t) = 1]. The epidemic
(information) spreading process from an infected (infor-
mation possessing) node to its healthy (information-less)
neighbors is a Poisson process with rate β. Only when
node i is infected (has the information), it can infect
(share the information) with the direct neighbors with
rate β. In an online social network, a user can obtain the
information via different sources (e.g., the “social rein-
forcement” effect [27, 28]) that are not necessarily related
to the network, which is modeled by the self-infection rate
ε. An infected (information possessing) node is cured
(releases the information) with a Poisson rate δ. The ex-
act governing SIS equation for the infection (information
possessing) probability of node i, is

d

dt
E[Xi] = E

(−δ + ε)Xi + (1−Xi)β

N∑
j=1

aijXj

 .
(1)

The topology dynamics in ASIS and AID, are opposite.
In both models, two Poisson processes, the link-breaking
and link-creating with rates ζ and ξ respectively, change
the network’s topology. In AID, the link-creating pro-
cess establishes a link between a node pair (i, j), when
exactly one node i or j has the information. The link-
breaking process removes an existing link between a node
pair (i, j), when both i and j do not possess the infor-
mation, and if there was no link in the original network
(aij (0) = 0). The AID governing equation for the link
existence probability E [aij (t)] = Pr [aij (t) = 1] is, for
i 6= j, is

d

dt
E[aij ] =(1− aij (0))E

[
− ζaij(1−Xi)(1−Xj)

+ ξ(1− aij) (Xi −Xj)
2
]
. (2)

As initial graph, we confine ourselves to the empty graph
with N nodes and no links (aij (0) = 0 for i 6= j). The
right-hand side of (2) consists of two opposing processes:
(a) while either node i or j (but not both) possesses the
information, the link between node i and j is created
with rate ξ, in this way modeling the tendency for the
information-less nodes to obtain the information faster.
This link creating process is applicable to information
diffusion in online social networks, where friendship and
follower links can be changed adaptively; (b) if two adja-
cent nodes i and j do not have the information, the link
between them is broken with rate ζ, due to the absence of
incentives of maintaining a link between the information-
less nodes. In the case that both node i and j have the
information (i.e. Xi = Xj = 1), the link is preserved,

i.e.
dE[aij ]
dt = 0. Hence, the link dynamics in (2) tends

to increase the degree of a node with information and to
decrease the degree of a node without information. For
convenience, we denote the effective information expiring
rate by δ∗ = δ− ε. By expressing the time in units of δ∗,
the model parameters in (1) and (2) can be reduced to

the effective information spreading rate τ = β
δ∗ , the effec-

tive link breaking rate ω = ζ
ξ and a choice of either ξ, β

or ζ. Just as the SIS process on a fixed graph, the AID
process is Markovian [29] with the overall-healthy state
(or absorbing state) as steady-state. The relevant phys-
ical behavior happens in the metastable state in which
the system (SIS process and network) above the epidemic
threshold [30] τc remains for a long time [26, 31].

We verify that the AID model is realistic by using
data from Facebook - the most famous social network
nowadays. FIG. 1 shows that the AID model is realis-
tic, by verifying Facebook wall posts [32] from the New
Orleans area for the last three months [33] of 2008. The
rates in the AID model are extracted [34] from the data
and the process is detailed in the supplementary mate-
rial. Subsequently, the prevalence obtained from the AID
model and from Facebook data is compared in FIG. 1,
illustrating a good fit.
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FIG. 1. (Color online) The prevalence of the AID model
and the real Facebook data [32] from the New Orleans re-
gion (USA) for the last three months of 2008. A good fit is
obtained.

In ASIS [35], the topology changes in an opposite way:
(a) while either node i or j (but not both) is infected,
the link between node i and j is removed with rate ζ in
order to protect the susceptible node from infection; (b)
while both node i and j are susceptible, a link is created
between them with rate ξ. For ASIS, in the case that
both node i and j are infected (i.e. Xi = Xj = 1), the
link is preserved, whose link dynamic, opposite to (2), is

d

dt
E[aij ] =aij (0)E

[
− ζaij (Xi −Xj)

2

+ ξ (1− aij) (1−Xi)(1−Xj)
]
. (3)

The aim of this paper is to report a striking difference
that emerges from the two seemingly “similar” models,
AID and ASIS, that both reflect realistic physical phe-
nomena. Both models build upon the SIS epidemic model
(1), but adaptively change the topology in opposite ways
given in (2) and (3) for AID and ASIS, respectively. The
factors −ζaij and ξ (1− aij) multiply (1 − Xi)(1 − Xj)

and (Xi −Xj)
2
, respectively, for the AID model in (2),

while the order of multiplication for the same factors is
reverse in the ASIS model in (3). Most importantly, the
AID model shows instability and non-existence of the
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metastable state for some regions of τ and ω, which is not
the case for the ASIS model. The characteristic differ-
ences between ASIS and AID are summarized in Table I.
We further proceed to explain those differences.

TABLE I. A comparison of the adaptive models.

property/model ASIS AID
metastable state always stable unstable (τ, ω) regions
threshold τc(ω) linear (mostly) constant
topological metrics “half-elliptical” rotated “half-elliptical”

Without resorting to any mean-field approximation,
we provide exact expressions for the fraction of infected
nodes and the epidemic threshold for both models. These
relations, although not closed-form expressions, due to
the existence of probabilistic and variance terms, pro-
vide exact solutions and more interestingly, can explain
the existence and stability of the number of infected
nodes in the metastable state for both AID and ASIS.
The key observation, that the same correlation terms
as E[aijXiXj ] appear in (1) and in both (2) and (3),
led to the explicit relations of the prevalence, the frac-
tion of information possessing/infected nodes. We de-

note by Z∗ = 1
N

∑N
j=1X

∗
j the prevalence and the average

metastable state or maximal prevalence by y = E [Z∗]
in a graph with N nodes. Interestingly, it holds [36]:
Var [Z∗] < E [Z∗] ≤ y ≤ 1. We also denote T (N) =
E[

∑N
i=1 d

∗
i (1−X

∗
i )]

N2 , which is bounded by

0 ≤ T (N) ≤
E
[∑N

j=1 d
∗
j

]
N2

=
E [2L∗]

N2
≤ N(N − 1)

N2
< 1.

For the AID model, we have [37]

y =
1

2

(
1 +

ω − 2

2τN

)(
1±

√
1− 4Var [Z∗] + 2ωT (N)(

1 + ω−2
2Nτ

)2
)
,

(4)

where Var[Z∗] and d∗j denote the variance of the preva-
lence and the degree of node j, respectively. A key ob-
servation from (4), leading to the non-existence of the
metastable state for AID in some parameter regime, is
the possibility that the argument under the square root
is negative! Indeed, let us consider a large network size,
where N →∞, so that (4) simplifies to

y =
1

2

(
1±

√
1−

(
2ωT∞ + 4Var [Z∗]

))
. (5)

Eq. (5) shows that the metastable state does not exist
for AID, if 4Var [Z∗] + 2ωT∞ > 1, and, hence,

Var [Z∗] >
1

4

is sufficient for the non-existence of the metastable state
in AID. Moreover, (5) leads to an upper bound for the

link-breaking rate ω:

ω ≤ 1− 4Var [Z∗]

2T∞
≤ 1

2T∞
,

otherwise there will not be a metastable state solution.
The consequences of (5) are confirmed by extensive

simulations. There are regions for (τ, ω), where the
metastable state does not exist, as demonstrated in
FIGS. 2a and 2b. The instability area exhibits a “sand-
clock” shape: it is wider close to the center of the coor-
dinated system, further narrows and then widens again
for higher τ and ω. The instability area in AID finally
vanishes for high enough τ and ω. Finally, as a side note,
we find that there are regions of instability even in a
more general model from our, where the infection rates
change during time [38].

The ASIS metastable state prevalence is [37]

y =

(
1− 1

2N
+
ω∗ − 1

2

τN

)
×1±

√√√√√1−
1− 1

N + Var [Z∗]− T (N)(
1− 1

2N +
ω∗− 1

2

τN

)2
 , (6)

where the value under the square root in (6) is always
positive. Hence, the metastable state always exists [35]
and is given by (7) with sign “-”. The prevalence y as a
function of τ is shown in FIG. 2c. For N →∞, (6) boils
down to

y = 1±
√
T∞ −Var [Z∗]. (7)

In contrast with the AID model, there is in (7) no con-
straint on ω for the ASIS metastable state.

For a combination of (β, δ, ζ, ξ) with relatively higher
link breaking rate than the creating rate and “small”
spreading rate in the AID model, a small portion of nodes
obtains the information, which does not have a potential
(the spreading rate is small and breaking rate relatively
big) to stay long nor can be considered as a metastable
state. Consequently, in such a combination, multiple and
sharp changes, both epidemically and topologically, are
visualized in FIG. 3a. In the other case of a stable combi-
nation, there is a critical mass of links and information-
possessing nodes and although there are time changes,
the forces of the epidemics reach an equilibrium (e.g, one
link is broken, but another is created), which represents
the metastable state as shown in FIG. 3b.

The epidemic thresholds can be determined from the
equations of both AID and ASIS [37]. Surprisingly, the
threshold is linear in ω only for ASIS,

τc (ω; ξ) =
2ω − 1

N
(
hASIS (ω; ξ)− 2 + 1

N

) , (8)

where 1 ≤ hASIS (ω; ξ) ≤ 2 + 1
N

(
1
a − 1

)
and

a = ∂τc(ω;ξ)
∂ω

∣∣∣
ω→∞

is almost a constant. The func-

tion hASIS (ω; ξ) is a positive, slowly varying, obeying
hASIS

(
1
2 ; ξ
)

= 2− 1
N for the ASIS model, for all ω > 0.
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FIG. 2. (Color online) (a) Instability region for the AID model. (b) The prevalence y in the AID model. (c) The prevalence y
the ASIS model. (a) and (b) demonstrate the instability in AID. (c) demonstrates the stability in ASIS.
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FIG. 3. (Color online) The numbers of links and infected
nodes as functions of consecutive time moments in the AID
model for N = 40, ζ = 0.32, ξ = 0.1, δ = 1, ε = 10−3 and
different spreading rates β. (a) β = 0.152; (b) β = 1.0. The
points of instability/stability are in accordance to FIG. 2a.

For AID, on the other hand, the information threshold
is the quotient of two linear functions, that approaches a
constant for large ω,

τc (ω; ξ) =
ω − 2

2N (hAID (ω; ξ)− 1)
, (9)

where hAID (ω; ξ) ≤ 1 + max{1, 1 + ω−2
2Na} and

a = limω→∞
∂hAID(ω;ξ)

∂ω is almost a constant. For ω > 2,
the function hAID (ω; ξ) is almost linear in ω, obeying
hAID (2; ξ) = 1 for the AID model.

The simulations shown in FIG. 4b indicate that
τc (ω; ξ) increases about linearly in ω, confirming (8)
for the ASIS model, while FIG. 4a, for the AID model,
demonstrate that the epidemic threshold is quotient of
two linear functions in ω, and almost constant for large
ω. Finally, a noisy epidemic threshold in FIG. 4a is a
fingerprint of the instability in the AID model.

FIG. 5 shows, as a contour plot in the (τ, ω)-plane, the
modularity value of the networks in the metastable for
both ASIS and AID (where stable). The contour lines
resemble roughly concentric half ellipses, for the effective
infection rate τ well above the epidemic threshold where
the epidemic is active in the metastable state. A remark-
able observation is that, for a fixed effective infection rate
τ , there are two different values for ω reaching the same
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FIG. 4. (Color online) Threshold τc versus effective link-
breaking rate ω for N = 40 (the inset: large range of ω).
(a) AID model; (b) ASIS model.
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FIG. 5. (Color online) Modularity in (τ, ω)-plane in the stable
region for ξ = 0.1. (a) AID model; (b) ASIS model.

value of the metric, each representing the regimes of very
small or very high effective link-breaking rates ω. The
“half-elliptical” contour lines of the modularity in ASIS
and AID only differ in two aspects: (i) the order of the
contour lines - “the inner contour” lines show higher mod-
ularity in ASIS, and lower in AID; (ii) they are rotated
from one another, although the shape is surprisingly sim-
ilar. In the (τ, ω)-plane, the instability area, which has
“sand-clock” shape (FIG. 2a), exists only for the AID
model, is just bellow the “half-ellipses” extremal node,
looks like their “natural extension” and is close to the
center of the coordinate system.

The metastable state (where it exists) of the AID model
is a random graph, while the metastable state in the ASIS
model is a graph with two separated components that
are loosely connected, each representing the susceptible
(close to complete graph) and infected nodes (random
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graph). In the absolute stable state in both ASIS and
AID models all nodes are susceptible. However, the final
stable state topology in AID is an empty graph, while
it is a complete graph in ASIS. The metastable states
are physically more interesting and those states are the
focuses of this paper.

Summarizing, our analysis of the adaptive epidemic
models ASIS and AID, with opposite topology dynamic,
leads to the following contributions:

1. In the metastable state, there is a “sand-clock”
shape area of instability only for the AID model.
The ASIS metastable state always exists.

2. The AID epidemic threshold τc is almost constant
in the effective link-breaking rate ω, while τc(ω)
linearly increases with ω for ASIS.

3. In the (τ, ω)-plane, topological metrics of both
adaptive epidemic models exhibit concentric half-
ellipses. The ASIS and AID models differ in the
order of the ellipses and the rotation.

4. By extracting the model rates (detailed in the sup-
plementary material), we validate the AID model
with data [32] from Facebook - the most famous
social network nowadays.
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Transactions on Networking 17, 1 (2009).

[27] A. L. Hill, D. G. Rand, M. A. Nowak, and N. A. Chris-
takis, PLoS Comput Biol 6, e1000968 (2010).

[28] D. Centola, Science 329, 1194 (2010).
[29] We can enumerate the (huge) state space. From any state,

there is a uniquely defined transition to another state
with constant rate.

[30] For τ < τc, node j is almost always healthy, Xj → 0, and
the link dynamics (2) show that the metastable topology
is close to the original graph.

[31] P. Van Mieghem, arXiv abs/1310.3980 (2013).
[32] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi,

in Proc. of the 2nd ACM SIGCOMM Workshop on Social
Networks (WOSN) (2009).

[33] After the major redesign of Facebook [32], allowing users
to more easily see friends’ posts (articles) on its own wall.

[34] The period of 3 months has been divided equally in
chunks of 5 days. The rates β, δ, ε, ζ and ξ have been
extracted from the data. Details are given in the supple-
mentary material.

[35] D. Guo, S. Trajanovski, R. van de Bovenkamp, H. Wang,
and P. Van Mieghem, Phys. Rev. E 88, 042802 (2013).

[36] Due to Cauchy-Schwarz inequality, we have

(
∑N

j=1Xj)
2 ≤ N(

∑N
j=1X

2
j ) = N(

∑N
j=1Xj), because

Xj ∈ {0, 1}. Now, we can apply this into Var [Z∗] =

E[Z2] − (E[Z2])2 ≤ E[Z2] = 1
N2E[(

∑N
j=1Xj)

2] ≤
1

N2E[N
∑N

j=1Xj ] = 1
N
E[
∑N

j=1Xj ] = E[Z] ≤ 1.

[37] The derivations are given in the supplementary material.
[38] This is a case in the model of Huang et al. [39] for

time-changing, activity dependent infection rates. To not
break the flow of the paper, more details are given in the
supplementary material.

[39] J. Huang, C. Li, W.-Q. Wang, H.-W. Shen, G. Li, and
X.-Q. Cheng, Scientific Reports 4, 5334 (2014).



1

Supplementary material

I. SCHEMATIC VISUALIZATION OF THE MODELS

The link state changing for both models based on the viral states of a pair of nodes is visualized in FIG. 1. For
the AID model, a link is created between a pair of nodes if exactly one node is infected (I) and one is susceptible (S),
while an existing link is broken between two susceptible (S) nodes (FIG. 1a). On the other hand, for the ASIS model
an existing link is broken between a pair of exactly one susceptible (S) and one infected node (I), while a new link is
created between two susceptible (S) nodes (FIG. 1b).

SI SI

before after

create a link

S S

before after

S S

delete a link

susceptible - infected

susceptible - susceptible

AID model

(a)

SI SI

before after

delete a link

S S

before after

S S

create a link

susceptible - infected

susceptible - susceptible

ASIS model

(b)

FIG. 1. (Color online) Link state changing process based on the viral states of a pair of nodes. (a) AID model. (b) ASIS model.

II. AID MODEL

A. Rates extraction from New Orleans Facebook data [1]

TABLE I. Rates for the AID model (on 4 decimal places).

period (2008) ε β δ ζ × 10−4 ξ × 10−4 Data prevalence
Oct 1-5 0.0105 0.6809 0.5873 2.3666 2.8165 0.6288
Oct 6-10 0.0101 0.6970 0.5565 1.7692 2.4906 0.6750
Oct 11-15 0.0096 0.6823 0.5990 2.4365 2.6906 0.6095
Oct 16-20 0.0087 0.6932 0.5795 2.2100 2.5333 0.6368
Oct 21-25 0.0093 0.6958 0.5627 1.7615 2.3642 0.6611
Oct 26-31 0.0089 0.7103 0.5639 1.7355 2.2563 0.6546
Nov 1-5 0.0100 0.6912 0.6253 2.6540 2.5270 0.5789
Nov 6-10 0.0080 0.6923 0.5752 1.7662 2.3467 0.6573
Nov 11-15 0.0085 0.7157 0.5576 1.5625 2.1799 0.6682
Nov 16-20 0.0072 0.7052 0.5515 1.7317 2.1085 0.6502
Nov 21-25 0.0099 0.6929 0.5921 2.1168 2.1916 0.6099
Nov 26-30 0.0114 0.6766 0.6204 2.3428 2.4107 0.5917
Dec 1-5 0.0101 0.7110 0.5357 1.1696 1.8996 0.7111
Dec 6-10 0.0100 0.6962 0.5788 1.8217 2.0041 0.6205
Dec 11-15 0.0122 0.6975 0.5804 1.7305 1.9855 0.6311
Dec 16-20 0.0127 0.7109 0.5549 1.4903 1.9097 0.6568
Dec 21-25 0.0112 0.7229 0.6071 1.9511 2.0876 0.6028
Dec 26-31 0.0115 0.7145 0.5558 1.2761 1.8154 0.6794



2

The data of the last 3 months has been divided into chunks of 5 days. The spreading rate β, curing rate δ,
self-infection rate ε, link-breaking rate ζ and link-creating rate ξ are obtained as following.

The self-infection rate ε is proportional to the number of users who posted on their own walls in a given time-chunk,
while the spreading rate β is proportional to those who posted others during this period. The curing (recovery or
information expiration) rate δ is proportional to those who were infected (i.e. receive the information, posted by
others) in the previous time period, but not in the current time chunk. Finally, the link-creating rate ξ is proportional
to the number of uniquely established communication between two users in a certain time period, while the link-
breaking rate ζ is proportional to these connections that were established during the previous time period, but not
in the current one. Finally, the rates are normalized with the time equals to 5 days. The prevalence of the model in
the metastable state is obtained after averaging of 50 independent runs.

B. Prevalence y: fraction of information possessing nodes

We transform the link dynamic equation into

d

dt
E[aij ] =− ζE [aij ] + ξE [Xi] + ξE [Xj ]− 2ξE [XiXj ]

+ (ζ − ξ)E [aijXi] + (ζ − ξ)E [aijXj ] + (2ξ − ζ)E [aijXiXj ]

After summing these equations over all j 6= i and using the degree of node i, di =
∑N
j=1 aij and aii = 0, we arrive at

d

dt
E[di] =− ζE [di] + ξE

(N − 1)Xi +

N∑
j=1;j 6=i

Xj

+ (ζ − ξ)E

diXi +

N∑
j=1

aijXj


− 2ξE

Xi

N∑
j=1;j 6=i

Xj

+ (2ξ − ζ)E

 N∑
j=1

aijXiXj


Using

(N − 1)Xi +

N∑
j=1;j 6=i

Xj = (N − 2)Xi +

N∑
j=1

Xj

and

Xi

N∑
j=1;j 6=i

Xj = Xi

 N∑
j=1

Xj −Xi

 = Xi

N∑
j=1

Xj −Xi

we find

d

dt
E[di] =− ζE [di] + ξE

N ·Xi +

N∑
j=1

Xj

+ (ζ − ξ)E

diXi +

N∑
j=1

aijXj


− 2ξE

Xi

N∑
j=1

Xj

+ (2ξ − ζ)E

 N∑
j=1

aijXiXj

 (1)

Re-writing the governing epidemic expression as

E

 N∑
j=1

aijXiXj

 = − 1

β

d

dt
E[Xi]−

1

τ
E [Xi] + E

 N∑
j=1

aijXj
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and substituting into (1) to remove the highest order correlation term, yields

d

dt
E[di] =− ζE [di] + ξE

N ·Xi +

N∑
j=1

Xj

+ (ζ − ξ)E

diXi +

N∑
j=1

aijXj


− 2ξE

Xi

N∑
j=1

Xj

+ (2ξ − ζ)

− 1

β

d

dt
E[Xi]−

1

τ
E [Xi] + E

 N∑
j=1

aijXj


Using the notation of ω = ζ

ξ

d

dt
E

[
di
ζ

+
2
ω − 1

β
Xi

]
=− E [di] +

1

ω
E

N ·Xi +

N∑
j=1

Xj

+

(
1− 1

ω

)
E

diXi +

N∑
j=1

aijXj


− 2

ω
E

Xi

N∑
j=1

Xj

+

(
2

ω
− 1

)E
 N∑
j=1

aijXj

− 1

τ
E [Xi]


=− E

[
di +

(
−N
ω

+
2
ω − 1

τ
+

(
1

ω
− 1

)
di

)
Xi

]

+
1

ω
E

 N∑
j=1

Xj

− 2

ω
E

Xi

N∑
j=1

Xj

+
1

ω
E

 N∑
j=1

aijXj


Using

∑N
i=1 di = 2L and summing over all i, we obtain

d

dt
E

[
2L

ζ
+

(
2
ω − 1

)
β

N∑
i=1

Xi

]
=− E

2L− 1

ω

(
N +

ω − 2

τ

) N∑
j=1

Xj +

(
1

ω
− 1

) N∑
i=1

diXi


+

1

ω
E

N N∑
j=1

Xj

− 2

ω
E

( N∑
i=1

Xi

)2
+

1

ω
E

 N∑
j=1

djXj


=− E

2L− 1

ω

(
N +

ω − 2

τ

) N∑
j=1

Xj


+

1

ω
E

N N∑
j=1

Xj

− 2

ω
E

( N∑
i=1

Xi

)2
+ E

 N∑
j=1

djXj


Simplified, denoting by Z = 1

N

∑N
j=1Xj the fraction of infected nodes

d

dt
E

[
2L

ζ
+

(
2
ω − 1

)
N

τδ∗
Z

]
=− 2E [L] +

1

ω

(
N +

ω − 2

τ

)
N · E [Z]

+
N2

ω
E [Z]− 2N2

ω
E
[
Z2
]

+ E

 N∑
j=1

djXj


=− 2E [L] +

1

ω

(
2N +

ω − 2

τ

)
N · E [Z]− 2N2

ω
E
[
Z2
]

+ E

 N∑
j=1

djXj


When the derivative at the left-hand side vanishes (in the steady-state or at an extreme value, which we denote by a
superscript ∗), we have(

2N +
ω − 2

τ

)
N · E [Z∗]− 2N2E

[
(Z∗)2

]
− ωE

[
N∑
i=1

d∗i (1−X∗i )

]
= 0
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Using E
[
(Z∗)

2
]

= Var[Z] + (E [Z∗])
2

and y = E [Z∗], we arrive at

y2 −
(

1 +
ω − 2

2Nτ

)
y +

(
Var [Z∗] +

ω

2N2
E

[
N∑
i=1

d∗i (1−X∗i )

])
= 0 (2)

Solving quadratic equation (2) yields the final expression.

C. Information threshold τc

For brevity, we denote by V = 1
2 + ω−2

4τN and H = Var [Z∗] + ω
2N2E

[∑N
i=1 d

∗
i (1−X∗i )

]
and equation (2) boils down

to y2 − 2V y +H = 0. For y > 0, we have that

V =
1

2
(y +

H

y
)

Using the definition of V , we can extract τ as

ω − 2

2τN
= y +

H

y
− 1

τ =
ω − 2

2N(y + H
y − 1)

The epidemic threshold is defined as the largest non-negative value of τ when y ↓ 0, such that

τc =
ω − 2

2N
(

limy↓0
H
y − 1

) (3)

where H
y = q (τ, ω; ξ) is a function of both τ and ω (and ξ)[2], but limy↓0

H
y = q (τc, ω; ξ) = hAID (ω; ξ). Thus, we

obtain the analytic expression (3) for epidemic threshold. The remainder of the proof consists of demonstrating that
hAID (ω; ξ) is linearly increasing function in ω.

The two roots of the quadratic equation satisfy y1 + y2 = 2V and y1y2 = H. Since H ≥ 0, the roots are either both
negative or both positive. Since negative roots have no physical meaning, we must require that V ≥ 0, which implies,
with the definition of V that

1 ≥ 2− ω
2τN

τ ≥ 1

N
− ω

2N

This condition for the effective infection rate τ , which is only confining for ω < 2, can be sharpened. The roots y1 and y2

must be real so that the discriminant of the quadratic equation is non-negative, H ≤ V 2 or
(√

H − V
)(√

H + V
)
≤ 0.

Requiring positive roots so that 0 ≤
√
H ≤ V , leads, with the definition of V , to

√
H − 1

2
≤ ω − 2

4τN

If H ≤ 1
4 , we arrive at the improved lower bound

1

2
−
√
H ≥ 2− ω

4τN
2− ω

2N (1− hAID)
= τc ≥ τ∗ =

2− ω
2N(1− 2

√
H)

(4)

Since (4) indicates that τ∗ ≤ τc, there must hold 2
√
H ≤ hAID (ω; ξ) < 1 for ω < 2. A continuity argument requires

for ω → 2 that τc > 0 so that limω→2 hAID (ω; ξ) = 1 and τc (2; ξ) = 1

2N
∂hAID(ω;ξ)

∂ω

∣∣∣
ω=2

. For small ω (more link-creation
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than link-breaking) there is no a valuable lower bound different from 0, since all the node would anyway receive the
information for any τ .

If ω ≥ 2 (more link-breaking than link-creation), then there is no confinement for τ . In order to have an epidemic
threshold τc (ω; ξ) > 0, there must hold that hAID (ω; ξ) > 1 for ω > 2. For an extremely high effective link-breaking
rate ω, a node that does not possess the information can hardly connect to a node, which posses the information,
hence it is natural that the epidemic threshold τc (ω; ξ) would not increase for high enough ω > 2. Moreover, τc (ω; ξ)
is non-decreasing function, hence τc (ω; ξ) is almost a constant for high enough ω and limω→∞ τc (ω; ξ) = const. The
last implies that hAID (ω; ξ) is non-decreasing linear function in ω for any ω ≥ 0, in which case we deduce from (3)

that limω→∞
∂hAID(ω;ξ)

∂ω ≈ const 6= 0 and that hAID (ω; ξ) ≤ 1 + ω−2
2N ·limω→∞

∂hAID(ω;ξ)

∂ω

for all ω > 2.

D. The effects of ε on the instability and the memory effects of the infection rate

We study the effect of different self-infection rates ε for reflecting the “social reinforcement” models as suggested
by Hill A. L. et al. [3]. The simulations in FIG. 2 confirm that the metastable state may not exists in AID model (i.e.
there is also an area of instability) for different ε the same as the theoretical results before in Section II B.
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FIG. 2. (Color online) The instability for the metastable state is present in the AID model. There are differences for the
metastable state for different ε, but the general claim for the stability of the metastable state holds. (a) ε = 10−1; (b) ε = 10−2;
(c) ε = 10−3.
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FIG. 3. (Color online) Demonstration of the memory effects and time-changing β according to the model of Huang et al. [3].
The metastable state of AID is still unstable for certain parameters.

In order to account the memory and expiration effects, we follow the approach by Huang et al. [4], for time-changing
infection rates according to the law:

Probability of infecting ∝ β ∝ (tcur − tprev)−0.7

where tprev and tcur are the previous and the current time of infecting. According to FIG. 3, the metastable state
may also not exist in this case as in AID model. Finding a theoretical closed-form expression for the prevalence, is
infeasible because the infection rates are different (moreover, time changing) and the model cannot be summed up
(additively) as we do in Section II B.
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III. ASIS MODEL

A. Prevalence y: fraction of infected nodes

We transform the link dynamic equation into

d

dt
E[aij ] = ξ (1− E [aij ])− ξE [(Xi +Xj)]− (ζ − ξ)E [aij (Xi +Xj)] + ξE [XiXj ]

+ (2ζ − ξ)E [aijXiXj ]

After summing these equations over all j 6= i and using the degree of node i, di =
∑N
j=1 aij and aii = 0, we obtain

d

dt
E[di] = ξ (N − 1− E [di])− ξE

(N − 1)Xi +

N∑
j=1;j 6=i

Xj

− (ζ − ξ)E

diXi +

N∑
j=1

aijXj


+ ξE

Xi

N∑
j=1;j 6=i

Xj

+ (2ζ − ξ)E

 N∑
j=1

aijXiXj


Using

(N − 1)Xi +

N∑
j=1;j 6=i

Xj = (N − 2)Xi +

N∑
j=1

Xj

and

Xi

N∑
j=1;j 6=i

Xj = Xi

 N∑
j=1

Xj −Xi

 = Xi

N∑
j=1

Xj −Xi

we find

d

dt
E[di] = ξ (N − 1− E [di])− ξE

(N − 1)Xi +

N∑
j=1

Xj

− (ζ − ξ)E

diXi +

N∑
j=1

aijXj


+ ξE

Xi

N∑
j=1

Xj

+ (2ζ − ξ)E

 N∑
j=1

aijXiXj


Substituting from the governing epidemic expression

E

 N∑
j=1

aijXiXj

 = − 1

β

d

dt
E[Xi]−

1

τ
E [Xi] + E

 N∑
j=1

aijXj


into the above relation to remove the highest order correlation term, yields

d

dt
E[di] = ξ (N − 1)− ξE [di]− ξE

[(
N − 1 +

(2ζ − ξ)
τξ

)
Xi

]
− ξE

 N∑
j=1

Xj

− (ζ − ξ)E [diXi]

+ ξE

Xi

N∑
j=1

Xj

− (2ζ − ξ)
β

d

dt
E[Xi] + ζE

 N∑
j=1

aijXj


Rewritten, using ω = ζ

ξ ,

d

dt
E

[
di
ξ

+
(2ω − 1)

β
Xi

]
= N − 1− E

[
di +

(
N − 1 +

2ω − 1

τ
+ (ω − 1) di

)
Xi

]

− E

 N∑
j=1

Xj

+ E

Xi

N∑
j=1

Xj

+ ωE

 N∑
j=1

aijXj
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Now, we sum over all i, using
∑N
i=1 di = 2L, then

d

dt
E

[
2L

ξ
+

(2ω − 1)

β

N∑
i=1

Xi

]
= N (N − 1)− E

[
2L+

(
N − 1 +

2ω − 1

τ

) N∑
i=1

Xi + (ω − 1)

N∑
i=1

diXi

]

− E

N N∑
j=1

Xj

+ E

( N∑
i=1

Xi

)2
+ ωE

 N∑
j=1

djXj


Simplified, with t̃ = δ∗t and the fraction of infected nodes Z = 1

N

∑N
j=1Xj

d

dt̃
E

[
2δ∗L

ξ
+

(2ω − 1)N

τ
Z

]
= N (N − 1)−N

(
2N − 1 +

2ω − 1

τ

)
E [Z]

+N2E
[
Z2
]

+ E

[
N∑
i=1

diXi

]
− E [2L]

When the derivative at the left-hand side vanishes (in the steady-state or at an extreme value, which we denote by a

superscript ∗) and using E
[
Z2
]

= Var[Z] + (E [Z])
2

and y = E [Z∗], we arrive at

N (N − 1)−N
(

2N − 1 +
2ω − 1

τ

)
y +N2(y2 + Var[Z∗])− E

[
N∑
i=1

d∗i (1−X∗i )

]
= 0

or

y2 −
(

2− 1

N
+

2ω − 1

τN

)
y +

(
1− 1

N
+ Var [Z∗]− 1

N2
E

[
N∑
i=1

d∗i (1−X∗i )

])
= 0 (5)

Solving quadratic equation (5) gives the final expression.

B. Epidemic threshold τc

For simplicity, we denote by V = 1− 1
2N + 2ω−1

2τN and H = 1− 1
N +Var [Z∗]− 1

N2E
[∑N

i=1 d
∗
i (1−X∗i )

]
and equation

(5) boils down to y2 − 2V y +H = 0. For y > 0, we have that

V =
1

2
(y +

H

y
)

Using the definition of V , we can extract τ as

2ω − 1

2τN
=

1

2
(y +

H

y
)− 1 +

1

2N

τ =
2ω − 1

2N
(

1
2

(
y + H

y

)
− 1 + 1

2N

)
The epidemic threshold is defined as the largest non-negative value of τ when y ↓ 0, such that

τc =
2ω − 1

N
(

limy↓0
H
y − 2 + 1

N

) (6)

where H
y = q (τ, ω; ξ) is a function of both τ and ω (and ξ), but limy↓0

H
y = q (τc, ω; ξ) = h (ω; ξ). Thus, we obtain

the analytic expression (6) for epidemic threshold. The remainder of the proof consists of demonstrating that h (ω; ξ)
is a positive, slowly varying function.

The two roots of the quadratic equation satisfy y1 + y2 = 2V and y1y2 = H. Since H ≥ 0, the roots are either both
negative or both positive. Since negative roots have no physical meaning, we must require that V ≥ 0, which implies,
with the definition of V that

1− 2ω

2N
(
1− 1

2N

) ≤ τ
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This condition for the effective infection rate τ , which is only confining for ω < 1
2 , can be sharpened. The roots y1 and

y2 must be real so that the discriminant of the quadratic equation is non-negative, H ≤ V 2 or
(√

H − V
)(√

H + V
)
≤

0. Requiring positive roots so that 0 ≤
√
H ≤ V , leads, with the definition of V , to

2ω − 1

2N
(√

H + 1
2N − 1

) ≥ τ
Since

√
H + 1

2N − 1 < 0, we arrive at the improved lower bound

1− 2ω

2N
(

1− 1
2N −

√
H
) = τ∗ ≤ τ (7)

If ω ≥ 1
2 (more link-breaking than link-creation), then there is no confinement for τ .

Since (7) indicates, for ω < 1
2 , that τ∗ ≤ τc, there must hold for ω < 1

2 that 2
√
H ≤ hASIS (ω; ξ) < 2 − 1

N . In

particular, h (0; ξ) ≥ 1 because τc (0; ξ) ≥ 1
N−1 , the epidemic threshold in SIS epidemics in KN without link dynamics.

More precisely, with τc (0; ξ) = 1
N

(
1 + c√

N
+O

(
N−1

))
, we find

hASIS (0; ξ) = 1 +
c√
N

+O
(
N−1

)
A continuity argument requires for ω → 1

2 that τc > 0 so that limω→ 1
2
hASIS (ω; ξ) = 2 − 1

N and τc
(
1
2 ; ξ
)

=
1

N
∂hASIS(ω;ξ)

∂ω

∣∣∣
ω=1

. For ω > 1
2 to have an epidemic threshold τc (ω; ξ) > 0, there must hold that hASIS (ω; ξ) > 2 − 1

N .

For an extremely high effective link-breaking rate ω, an infected node is immediately isolated from the healthy nodes
almost surely and cures in isolation so that the epidemic threshold τc (ω; ξ) is increasing for all ω > 1

2 and that
limω→∞ τc (ω; ξ) =∞. It is reasonable to assume that hASIS (ω; ξ) is not decreasing in ω for any ω ≥ 0, in which case

we deduce from (6) that limω→∞
∂hASIS(ω;ξ)

∂ω = 0 and that hASIS (ω; ξ) ≤ 2 + 1
N

(
1

∂τc(ω;ξ)
∂ω |

ω→∞

− 1

)
for all ω > 1

2 .

C. The effect of self-infection rate ε

For the ASIS model, we also study the effect of different self-infection rates ε for reflecting the chance of being ill
due to season/weather conditions, which is considered by Hill et al. [3]. The simulations in FIG. 4 show the same as
the theoretical results before in Section III A that the metastable state always exists in ASIS model for different ε.
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FIG. 4. (Color online) The metastable state in the ASIS model is always stable. There are differences for the metastable state
for different ε, but the general claim for the stability of the metastable state holds. (a) ε = 10−1; (b) ε = 10−2; (c) ε = 10−3.
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